sahlnizar commited on
Commit
1f674ce
·
verified ·
1 Parent(s): 8a7440f

Upload 2 files

Browse files
Files changed (2) hide show
  1. potato_model.h5 +3 -0
  2. streamlit_app.py +52 -0
potato_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b731b8339c7f93ee95c941b95cca2bb042c0cb608bba1d0b56e06649d14a6197
3
+ size 2288552
streamlit_app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import numpy as np
4
+ import tensorflow as tf
5
+ from werkzeug.utils import secure_filename
6
+ import os
7
+
8
+ os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
9
+
10
+ class_names = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
11
+
12
+ def predict(model, img):
13
+ img_array = tf.keras.preprocessing.image.img_to_array(img)
14
+ img_array = tf.expand_dims(img_array, 0)
15
+ predictions = model.predict(img_array)
16
+ predictions_arr = [round(100 * i, 2) for i in predictions[0]]
17
+ predicted_class = class_names[np.argmax(predictions[0])]
18
+ confidence = round(100 * (np.max(predictions[0])), 2)
19
+ return predicted_class, predictions_arr
20
+
21
+ model = tf.keras.models.load_model('potato_model.h5', compile=False)
22
+
23
+ def main():
24
+ st.set_page_config(page_title="Potato Disease Classifier")
25
+ st.sidebar.title("Potato Disease Classifier")
26
+ st.sidebar.info("Upload an image of a potato leaf to detect early or late blight.")
27
+ st.title("Potato Disease Detection")
28
+ uploaded_file = st.file_uploader("Upload a potato leaf image",type=['jpg','png','jpeg'])
29
+ if uploaded_file is not None:
30
+ image = Image.open(uploaded_file)
31
+ st.image(image,caption="Uploaded Image",use_column_width=True)
32
+ image = image.resize((256,256))
33
+ img_arr = np.array(image)
34
+ predicted_class,predictions=predict(model,img_arr)
35
+
36
+ response = {
37
+ "predicted_class": predicted_class,
38
+ "early": f"{predictions[0]:.2f}%",
39
+ "late": f"{predictions[1]:.2f}%",
40
+ "healthy": f"{predictions[2]:.2f}%"
41
+ }
42
+
43
+
44
+ st.success(f"Predicted Class : {response['predicted_class']}",icon="✅")
45
+ st.write("Probabilities:")
46
+ col1,col2,col3 = st.columns(3)
47
+ col1.metric("Early Blight" , f"{response['early']}", f"{response['early']}")
48
+ col2.metric("Late Blight" , f"{response['late']}", f"{response['late']}")
49
+ col3.metric("Healthy" , f"{response['healthy']}", f"{response['healthy']}")
50
+
51
+ if __name__ == "__main__":
52
+ main()