Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from PIL import Image | |
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator | |
from transformers import pipeline | |
import colorsys | |
sam_checkpoint = "sam_vit_h_4b8939.pth" | |
model_type = "vit_h" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
#sam.to(device=device) | |
#predictor = SamPredictor(sam) | |
#mask_generator = SamAutomaticMaskGenerator(sam) | |
generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256) | |
#image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" | |
# controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
# "SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32 | |
# ) | |
# pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
# "runwayml/stable-diffusion-v1-5", | |
# controlnet=controlnet, | |
# revision="flax", | |
# dtype=jnp.bfloat16, | |
# ) | |
# params["controlnet"] = controlnet_params | |
# p_params = replicate(params) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Ahsans version WildSynth: Synthetic Wildlife Data Generation") | |
gr.Markdown( | |
""" | |
## Work in Progress | |
### About | |
### How To Use | |
""" | |
) | |
with gr.Row(): | |
input_img = gr.Image(label="Input", type="pil") | |
mask_img = gr.Image(label="Mask", interactive=False) | |
output_img = gr.Image(label="Output", interactive=False) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
clear = gr.Button("Clear") | |
def generate_mask(image): | |
outputs = generator(image, points_per_batch=256) | |
mask_images = [] | |
#for mask in outputs["masks"]: | |
# color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0) | |
# h, w = mask.shape[-2:] | |
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
# np_img = mask_image; | |
# np_img = np.squeeze(np_img, axis=2) # axis=2 is channel dimension | |
# pil_img = Image.fromarray(np_img, 'RGB') | |
# mask_images.append(pil_img) | |
#return np.stack(mask_images) | |
return image | |
# def infer( | |
# image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4 | |
# ): | |
# try: | |
# rng = jax.random.PRNGKey(int(seed)) | |
# num_inference_steps = int(num_inference_steps) | |
# image = Image.fromarray(image, mode="RGB") | |
# num_samples = max(jax.device_count(), int(num_samples)) | |
# p_rng = jax.random.split(rng, jax.device_count()) | |
# prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
# negative_prompt_ids = pipe.prepare_text_inputs( | |
# [negative_prompts] * num_samples | |
# ) | |
# processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
# prompt_ids = shard(prompt_ids) | |
# negative_prompt_ids = shard(negative_prompt_ids) | |
# processed_image = shard(processed_image) | |
# output = pipe( | |
# prompt_ids=prompt_ids, | |
# image=processed_image, | |
# params=p_params, | |
# prng_seed=p_rng, | |
# num_inference_steps=num_inference_steps, | |
# neg_prompt_ids=negative_prompt_ids, | |
# jit=True, | |
# ).images | |
# del negative_prompt_ids | |
# del processed_image | |
# del prompt_ids | |
# output = output.reshape((num_samples,) + output.shape[-3:]) | |
# final_image = [np.array(x * 255, dtype=np.uint8) for x in output] | |
# print(output.shape) | |
# del output | |
# except Exception as e: | |
# print("Error: " + str(e)) | |
# final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples | |
# finally: | |
# gc.collect() | |
# return final_image | |
# def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): | |
# img = None | |
# mask = None | |
# seg = None | |
# out = None | |
# prompt = "" | |
# neg_prompt = "" | |
# bg = False | |
# return img, mask, seg, out, prompt, neg_prompt, bg | |
input_img.change( | |
generate_mask, | |
inputs=[input_img], | |
outputs=[mask_img], | |
) | |
# submit.click( | |
# infer, | |
# inputs=[mask_img, prompt_text, negative_prompt_text], | |
# outputs=[output_img], | |
# ) | |
# clear.click( | |
# _clear, | |
# inputs=[ | |
# input_img, | |
# mask_img, | |
# output_img, | |
# prompt_text, | |
# negative_prompt_text, | |
# ], | |
# outputs=[ | |
# input_img, | |
# mask_img, | |
# output_img, | |
# prompt_text, | |
# negative_prompt_text, | |
# ], | |
# ) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch() |