import os import zipfile import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import HuggingFacePipeline from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate # --- Step 1: Unzip FAISS index --- if not os.path.exists("faiss_index") and os.path.exists("faiss_index.zip"): with zipfile.ZipFile("faiss_index.zip", "r") as zip_ref: zip_ref.extractall(".") # --- Step 2: Load embedding and vectorstore --- embedding_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') vectordb = FAISS.load_local("faiss_index", embedding_model,allow_dangerous_deserialization=True) # --- Step 3: Load the LLM --- model_id = "tiiuae/tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id, max_new_tokens=200, do_sample=True, temperature=1.0, ) llm = HuggingFacePipeline(pipeline=pipe) # --- Step 4: Setup memory and QA chain --- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) prompt = PromptTemplate.from_template(""" You are a helpful assistant at the University of Hertfordshire. Use the context below to answer the question clearly and factually. If the answer is not in the context, say you don't know. Context: {context} Question: {question} Helpful Answer: """) qa_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectordb.as_retriever(search_kwargs={"k": 3}), memory=memory, chain_type="stuff", combine_docs_chain_kwargs={"prompt": prompt} ) UH_LOGO = "images/UH.png" # --- Step 5: Define chatbot logic --- def chat(message, history): result = qa_chain.invoke({"question": message}) response = result.get("answer", "") response = response.split("Answer:")[-1].replace("<|assistant|>", "").strip() if torch.cuda.is_available(): torch.cuda.empty_cache() return response # --- Step 6: UI --- sample_questions = [ "How do I register as a new student?", "Where can I find accommodation?", "Can I renew my tenancy agreement?", "What do I do on my first day?", ] with gr.Blocks() as demo: gr.Image(UH_LOGO, show_label=False, container=False, scale=1) gr.Markdown("## ASK Herts Students Help Chatbot 🤖") chatbot = gr.Chatbot() txt = gr.Textbox(placeholder="Ask me anything about university life...", label="Your question") submit = gr.Button("Submit") gr.Markdown("#### 💡 Sample Questions:") with gr.Row(): for q in sample_questions: gr.Button(q).click(lambda x=q: gr.update(value=x), outputs=[txt]) def respond(message, history): answer = chat(message, history) history.append((message, answer)) return "", history submit.click(respond, [txt, chatbot], [txt, chatbot]) txt.submit(respond, [txt, chatbot], [txt, chatbot]) demo.launch()