Spaces:
Runtime error
Runtime error
| import openai | |
| import gradio as gr | |
| from os import getenv | |
| from typing import Any, Dict, Generator, List | |
| from huggingface_hub import InferenceClient | |
| from transformers import AutoTokenizer | |
| #tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") | |
| tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
| temperature = 0.5 | |
| top_p = 0.7 | |
| repetition_penalty = 1.2 | |
| OPENAI_KEY = getenv("OPENAI_API_KEY") | |
| HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
| #hf_client = InferenceClient( | |
| # "mistralai/Mistral-7B-Instruct-v0.1", | |
| # token=HF_TOKEN | |
| # ) | |
| hf_client = InferenceClient( | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| token=HF_TOKEN | |
| ) | |
| def format_prompt(message: str, api_kind: str): | |
| """ | |
| Formats the given message using a chat template. | |
| Args: | |
| message (str): The user message to be formatted. | |
| Returns: | |
| str: Formatted message after applying the chat template. | |
| """ | |
| # Create a list of message dictionaries with role and content | |
| messages: List[Dict[str, Any]] = [{'role': 'user', 'content': message}] | |
| if api_kind == "openai": | |
| return messages | |
| elif api_kind == "hf": | |
| return tokenizer.apply_chat_template(messages, tokenize=False) | |
| elif api_kind: | |
| raise ValueError("API is not supported") | |
| def generate_hf(prompt: str, history: str, temperature: float = 0.5, max_new_tokens: int = 4000, | |
| top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]: | |
| """ | |
| Generate a sequence of tokens based on a given prompt and history using Mistral client. | |
| Args: | |
| prompt (str): The initial prompt for the text generation. | |
| history (str): Context or history for the text generation. | |
| temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. | |
| max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. | |
| top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. | |
| repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. | |
| Returns: | |
| Generator[str, None, str]: A generator yielding chunks of generated text. | |
| Returns a final string if an error occurs. | |
| """ | |
| temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low | |
| top_p = float(top_p) | |
| generate_kwargs = { | |
| 'temperature': temperature, | |
| 'max_new_tokens': max_new_tokens, | |
| 'top_p': top_p, | |
| 'repetition_penalty': repetition_penalty, | |
| 'do_sample': True, | |
| 'seed': 42, | |
| } | |
| formatted_prompt = format_prompt(prompt, "hf") | |
| try: | |
| stream = hf_client.text_generation(formatted_prompt, **generate_kwargs, | |
| stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| except Exception as e: | |
| if "Too Many Requests" in str(e): | |
| print("ERROR: Too many requests on Mistral client") | |
| gr.Warning("Unfortunately Mistral is unable to process") | |
| return "Unfortunately, I am not able to process your request now." | |
| elif "Authorization header is invalid" in str(e): | |
| print("Authetification error:", str(e)) | |
| gr.Warning("Authentication error: HF token was either not provided or incorrect") | |
| return "Authentication error" | |
| else: | |
| print("Unhandled Exception:", str(e)) | |
| gr.Warning("Unfortunately Mistral is unable to process") | |
| return "I do not know what happened, but I couldn't understand you." | |
| def generate_openai(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256, | |
| top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]: | |
| """ | |
| Generate a sequence of tokens based on a given prompt and history using Mistral client. | |
| Args: | |
| prompt (str): The initial prompt for the text generation. | |
| history (str): Context or history for the text generation. | |
| temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. | |
| max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. | |
| top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. | |
| repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. | |
| Returns: | |
| Generator[str, None, str]: A generator yielding chunks of generated text. | |
| Returns a final string if an error occurs. | |
| """ | |
| temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low | |
| top_p = float(top_p) | |
| generate_kwargs = { | |
| 'temperature': temperature, | |
| 'max_tokens': max_new_tokens, | |
| 'top_p': top_p, | |
| 'frequency_penalty': max(-2., min(repetition_penalty, 2.)), | |
| } | |
| formatted_prompt = format_prompt(prompt, "openai") | |
| try: | |
| stream = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301", | |
| messages=formatted_prompt, | |
| **generate_kwargs, | |
| stream=True) | |
| output = "" | |
| for chunk in stream: | |
| output += chunk.choices[0].delta.get("content", "") | |
| yield output | |
| except Exception as e: | |
| if "Too Many Requests" in str(e): | |
| print("ERROR: Too many requests on OpenAI client") | |
| gr.Warning("Unfortunately OpenAI is unable to process") | |
| return "Unfortunately, I am not able to process your request now." | |
| elif "You didn't provide an API key" in str(e): | |
| print("Authetification error:", str(e)) | |
| gr.Warning("Authentication error: OpenAI key was either not provided or incorrect") | |
| return "Authentication error" | |
| else: | |
| print("Unhandled Exception:", str(e)) | |
| gr.Warning("Unfortunately OpenAI is unable to process") | |
| return "I do not know what happened, but I couldn't understand you." | |