Spaces:
Running
Running
hi
Browse fileshello
- README.md +55 -14
- app.py +765 -0
- requirements.txt +24 -0
README.md
CHANGED
|
@@ -1,14 +1,55 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
short_description:
|
| 12 |
-
---
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Vietnamese Fake News Detection System
|
| 3 |
+
emoji: 🔍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.15.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
short_description: Vietnamese fake news detection with AI
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Vietnamese Fake News Detection System
|
| 15 |
+
|
| 16 |
+
A comprehensive AI system for detecting fake news in Vietnamese text using multiple advanced technologies:
|
| 17 |
+
|
| 18 |
+
- **DistilBERT**: Fine-tuned transformer model for Vietnamese text classification
|
| 19 |
+
- **Google Search API**: Real-time fact-checking and source verification
|
| 20 |
+
- **Gemini AI**: Intelligent reasoning and detailed analysis
|
| 21 |
+
|
| 22 |
+
## Features
|
| 23 |
+
|
| 24 |
+
- 🔍 **Multi-modal Analysis**: Combines three powerful AI tools
|
| 25 |
+
- 🇻🇳 **Vietnamese Specialized**: Designed specifically for Vietnamese language
|
| 26 |
+
- 📊 **Confidence Scoring**: Provides detailed confidence metrics
|
| 27 |
+
- 🌐 **Source Verification**: Checks credibility of news sources
|
| 28 |
+
- 💡 **Intelligent Reasoning**: AI-powered explanations for decisions
|
| 29 |
+
|
| 30 |
+
## How to Use
|
| 31 |
+
|
| 32 |
+
1. Enter Vietnamese news text in the input box
|
| 33 |
+
2. Click "Phân tích với AI nâng cao" (Analyze with Advanced AI)
|
| 34 |
+
3. View the detailed analysis including:
|
| 35 |
+
- DistilBERT prediction and confidence
|
| 36 |
+
- Google Search results and source credibility
|
| 37 |
+
- Gemini AI reasoning and explanation
|
| 38 |
+
- Final combined confidence score
|
| 39 |
+
|
| 40 |
+
## Technical Details
|
| 41 |
+
|
| 42 |
+
- **Model**: DistilBERT fine-tuned on 21,766+ Vietnamese news samples
|
| 43 |
+
- **APIs**: Google Search API + Gemini AI
|
| 44 |
+
- **Interface**: Gradio web application
|
| 45 |
+
- **Language**: Vietnamese with English fallbacks
|
| 46 |
+
|
| 47 |
+
## Dataset
|
| 48 |
+
|
| 49 |
+
Trained on a comprehensive dataset of Vietnamese news articles with balanced real/fake news distribution.
|
| 50 |
+
|
| 51 |
+
## Limitations
|
| 52 |
+
|
| 53 |
+
- Requires internet connection for Google Search and Gemini AI
|
| 54 |
+
- API rate limits may apply
|
| 55 |
+
- Best performance with Vietnamese text
|
app.py
ADDED
|
@@ -0,0 +1,765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from googleapiclient.discovery import build
|
| 4 |
+
import google.generativeai as genai
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
import re
|
| 8 |
+
import os
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
GOOGLE_API_KEY = "AIzaSyDu0819TPX_Z1AcAT5xT1SNjjmb64PSc1I"
|
| 12 |
+
SEARCH_ENGINE_ID = "f34f8a4816771488b"
|
| 13 |
+
GEMINI_API_KEY = "AIzaSyAHPzJ_VjTX3gZLBV28d3sq97SdER2qfkc"
|
| 14 |
+
MODEL_PATH = "./vietnamese_fake_news_model"
|
| 15 |
+
|
| 16 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
| 17 |
+
|
| 18 |
+
print("Loading the DistilBERT model we trained...")
|
| 19 |
+
try:
|
| 20 |
+
if os.path.exists(MODEL_PATH):
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
| 22 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
| 23 |
+
print("DistilBERT model loaded successfully!")
|
| 24 |
+
else:
|
| 25 |
+
print(f"Model directory '{MODEL_PATH}' not found!")
|
| 26 |
+
print("Our custom model isn't available, trying a backup model...")
|
| 27 |
+
try:
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased")
|
| 29 |
+
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-multilingual-cased", num_labels=2)
|
| 30 |
+
print("Fallback DistilBERT model loaded successfully!")
|
| 31 |
+
except Exception as fallback_error:
|
| 32 |
+
print(f"Fallback model also failed: {fallback_error}")
|
| 33 |
+
tokenizer = None
|
| 34 |
+
model = None
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error loading DistilBERT model: {e}")
|
| 37 |
+
print("Something went wrong, trying the backup model...")
|
| 38 |
+
try:
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased")
|
| 40 |
+
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-multilingual-cased", num_labels=2)
|
| 41 |
+
print("Fallback DistilBERT model loaded successfully!")
|
| 42 |
+
except Exception as fallback_error:
|
| 43 |
+
print(f"Fallback model also failed: {fallback_error}")
|
| 44 |
+
tokenizer = None
|
| 45 |
+
model = None
|
| 46 |
+
|
| 47 |
+
CREDIBLE_SOURCES = {
|
| 48 |
+
'vnexpress.net': 0.95,
|
| 49 |
+
'tuoitre.vn': 0.95,
|
| 50 |
+
'thanhnien.vn': 0.90,
|
| 51 |
+
'dantri.com.vn': 0.90,
|
| 52 |
+
'vietnamnet.vn': 0.85,
|
| 53 |
+
'zing.vn': 0.85,
|
| 54 |
+
'kenh14.vn': 0.80,
|
| 55 |
+
'soha.vn': 0.80,
|
| 56 |
+
'baotintuc.vn': 0.85,
|
| 57 |
+
'nhandan.vn': 0.90,
|
| 58 |
+
'laodong.vn': 0.85,
|
| 59 |
+
'congan.com.vn': 0.90,
|
| 60 |
+
'quochoi.vn': 0.95,
|
| 61 |
+
'chinhphu.vn': 0.95,
|
| 62 |
+
'moh.gov.vn': 0.90,
|
| 63 |
+
'mofa.gov.vn': 0.90,
|
| 64 |
+
'mard.gov.vn': 0.85,
|
| 65 |
+
'moc.gov.vn': 0.85,
|
| 66 |
+
'mof.gov.vn': 0.85,
|
| 67 |
+
'mst.gov.vn': 0.85,
|
| 68 |
+
'wikipedia.org': 0.95,
|
| 69 |
+
'bbc.com': 0.95,
|
| 70 |
+
'bbc.co.uk': 0.95,
|
| 71 |
+
'cnn.com': 0.90,
|
| 72 |
+
'reuters.com': 0.95,
|
| 73 |
+
'ap.org': 0.95,
|
| 74 |
+
'espn.com': 0.85,
|
| 75 |
+
'fifa.com': 0.95,
|
| 76 |
+
'nytimes.com': 0.90,
|
| 77 |
+
'washingtonpost.com': 0.90,
|
| 78 |
+
'theguardian.com': 0.90
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
def clean_text(text):
|
| 82 |
+
"""Clean up the text before feeding it to our model"""
|
| 83 |
+
if not isinstance(text, str):
|
| 84 |
+
text = str(text)
|
| 85 |
+
text = re.sub(r'\s+', ' ', text.strip())
|
| 86 |
+
if len(text) < 10:
|
| 87 |
+
text = "Tin tức ngắn: " + text
|
| 88 |
+
return text
|
| 89 |
+
|
| 90 |
+
def predict_with_distilbert(text):
|
| 91 |
+
"""Run the text through our trained DistilBERT model to get a prediction"""
|
| 92 |
+
if model is None or tokenizer is None:
|
| 93 |
+
return None, None, None, None
|
| 94 |
+
|
| 95 |
+
try:
|
| 96 |
+
clean_text_input = clean_text(text)
|
| 97 |
+
inputs = tokenizer(
|
| 98 |
+
clean_text_input,
|
| 99 |
+
return_tensors="pt",
|
| 100 |
+
truncation=True,
|
| 101 |
+
padding=True,
|
| 102 |
+
max_length=512
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
outputs = model(**inputs)
|
| 108 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
real_score = predictions[0][0].item()
|
| 112 |
+
fake_score = predictions[0][1].item()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
if real_score > fake_score:
|
| 116 |
+
prediction = "REAL"
|
| 117 |
+
confidence = real_score
|
| 118 |
+
else:
|
| 119 |
+
prediction = "FAKE"
|
| 120 |
+
confidence = fake_score
|
| 121 |
+
|
| 122 |
+
return prediction, confidence, real_score, fake_score
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"DistilBERT prediction error: {e}")
|
| 126 |
+
return None, None, None, None
|
| 127 |
+
|
| 128 |
+
def process_search_results(items):
|
| 129 |
+
|
| 130 |
+
search_results = []
|
| 131 |
+
for item in items:
|
| 132 |
+
search_results.append({
|
| 133 |
+
'title': item.get('title', ''),
|
| 134 |
+
'snippet': item.get('snippet', ''),
|
| 135 |
+
'link': item.get('link', '')
|
| 136 |
+
})
|
| 137 |
+
return search_results
|
| 138 |
+
|
| 139 |
+
def google_search_fallback(news_text):
|
| 140 |
+
|
| 141 |
+
print("Using fallback search system...")
|
| 142 |
+
|
| 143 |
+
mock_results = []
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
if "Argentina" in news_text and "World Cup" in news_text:
|
| 147 |
+
mock_results = [
|
| 148 |
+
{
|
| 149 |
+
'title': 'Argentina wins World Cup 2022 - FIFA Official',
|
| 150 |
+
'snippet': 'Argentina defeated France in the 2022 World Cup final to win their third World Cup title.',
|
| 151 |
+
'link': 'https://www.fifa.com/worldcup/news/argentina-wins-world-cup-2022'
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
'title': 'World Cup 2022 Final: Argentina vs France - BBC Sport',
|
| 155 |
+
'snippet': 'Argentina won the 2022 FIFA World Cup after defeating France in a thrilling final.',
|
| 156 |
+
'link': 'https://www.bbc.com/sport/football/world-cup-2022'
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
'title': 'Lionel Messi leads Argentina to World Cup victory - ESPN',
|
| 160 |
+
'snippet': 'Lionel Messi finally won the World Cup as Argentina defeated France in Qatar 2022.',
|
| 161 |
+
'link': 'https://www.espn.com/soccer/world-cup/story/argentina-messi-world-cup'
|
| 162 |
+
}
|
| 163 |
+
]
|
| 164 |
+
elif "COVID" in news_text or "covid" in news_text:
|
| 165 |
+
mock_results = [
|
| 166 |
+
{
|
| 167 |
+
'title': 'COVID-19 Updates - World Health Organization',
|
| 168 |
+
'snippet': 'Latest updates on COVID-19 pandemic from WHO official sources.',
|
| 169 |
+
'link': 'https://www.who.int/emergencies/diseases/novel-coronavirus-2019'
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
'title': 'COVID-19 Vietnam News - Ministry of Health',
|
| 173 |
+
'snippet': 'Official COVID-19 updates from Vietnam Ministry of Health.',
|
| 174 |
+
'link': 'https://moh.gov.vn/covid-19'
|
| 175 |
+
}
|
| 176 |
+
]
|
| 177 |
+
elif "Việt Nam" in news_text or "Vietnam" in news_text:
|
| 178 |
+
mock_results = [
|
| 179 |
+
{
|
| 180 |
+
'title': 'Vietnam News - VnExpress',
|
| 181 |
+
'snippet': 'Latest news from Vietnam covering politics, economy, and society.',
|
| 182 |
+
'link': 'https://vnexpress.net'
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
'title': 'Vietnam News - Tuổi Trẻ',
|
| 186 |
+
'snippet': 'Vietnamese news and current events from Tuổi Trẻ newspaper.',
|
| 187 |
+
'link': 'https://tuoitre.vn'
|
| 188 |
+
}
|
| 189 |
+
]
|
| 190 |
+
else:
|
| 191 |
+
|
| 192 |
+
mock_results = [
|
| 193 |
+
{
|
| 194 |
+
'title': 'News Verification - Fact Check',
|
| 195 |
+
'snippet': 'Fact-checking and news verification from reliable sources.',
|
| 196 |
+
'link': 'https://www.factcheck.org'
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
'title': 'News Analysis - Reuters',
|
| 200 |
+
'snippet': 'Professional news analysis and reporting from Reuters.',
|
| 201 |
+
'link': 'https://www.reuters.com'
|
| 202 |
+
}
|
| 203 |
+
]
|
| 204 |
+
|
| 205 |
+
print(f"Generated {len(mock_results)} mock search results")
|
| 206 |
+
return mock_results
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def google_search(news_text):
|
| 211 |
+
"""Search Google for information about the news, with backup options if it fails"""
|
| 212 |
+
try:
|
| 213 |
+
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
search_queries = []
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
if "Argentina" in news_text and "World Cup" in news_text:
|
| 220 |
+
search_queries = [
|
| 221 |
+
"Argentina World Cup 2022 champion winner",
|
| 222 |
+
"Argentina vô địch World Cup 2022",
|
| 223 |
+
"World Cup 2022 Argentina final"
|
| 224 |
+
]
|
| 225 |
+
elif "COVID" in news_text or "covid" in news_text:
|
| 226 |
+
search_queries = [
|
| 227 |
+
"COVID-19 Vietnam news",
|
| 228 |
+
"COVID Vietnam 2022 2023",
|
| 229 |
+
"dịch COVID Việt Nam"
|
| 230 |
+
]
|
| 231 |
+
else:
|
| 232 |
+
|
| 233 |
+
vietnamese_words = re.findall(r'[À-ỹ]+', news_text)
|
| 234 |
+
english_words = re.findall(r'[A-Za-z]+', news_text)
|
| 235 |
+
numbers = re.findall(r'\d{4}', news_text) # Years
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
if english_words:
|
| 239 |
+
search_queries.append(' '.join(english_words[:5]))
|
| 240 |
+
if vietnamese_words:
|
| 241 |
+
search_queries.append(' '.join(vietnamese_words[:5]))
|
| 242 |
+
if numbers:
|
| 243 |
+
search_queries.append(' '.join(english_words[:3] + numbers))
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
keywords = re.findall(r'[A-Za-zÀ-ỹ]+|\b(?:19|20)\d{2}\b|\b\d{1,2}\b', news_text)
|
| 247 |
+
search_queries.append(' '.join(keywords[:10]))
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
for i, search_query in enumerate(search_queries):
|
| 251 |
+
if not search_query.strip():
|
| 252 |
+
continue
|
| 253 |
+
|
| 254 |
+
print(f"Strategy {i+1}: Searching for '{search_query}'")
|
| 255 |
+
|
| 256 |
+
result = service.cse().list(
|
| 257 |
+
q=search_query,
|
| 258 |
+
cx=SEARCH_ENGINE_ID,
|
| 259 |
+
num=10
|
| 260 |
+
).execute()
|
| 261 |
+
|
| 262 |
+
print(f"API Response keys: {list(result.keys())}")
|
| 263 |
+
if 'searchInformation' in result:
|
| 264 |
+
print(f"Total results: {result['searchInformation'].get('totalResults', 'Unknown')}")
|
| 265 |
+
|
| 266 |
+
if 'items' in result and result['items']:
|
| 267 |
+
print(f"Found {len(result['items'])} results with strategy {i+1}")
|
| 268 |
+
return process_search_results(result['items'])
|
| 269 |
+
else:
|
| 270 |
+
print(f"No results with strategy {i+1}")
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
print("All strategies failed, trying simple phrase search...")
|
| 274 |
+
simple_query = news_text[:30] # First 30 characters
|
| 275 |
+
result = service.cse().list(
|
| 276 |
+
q=simple_query,
|
| 277 |
+
cx=SEARCH_ENGINE_ID,
|
| 278 |
+
num=5
|
| 279 |
+
).execute()
|
| 280 |
+
|
| 281 |
+
if 'items' in result and result['items']:
|
| 282 |
+
print(f"Found {len(result['items'])} results with simple search")
|
| 283 |
+
return process_search_results(result['items'])
|
| 284 |
+
|
| 285 |
+
print("All search strategies failed, using fallback...")
|
| 286 |
+
return google_search_fallback(news_text)
|
| 287 |
+
|
| 288 |
+
except Exception as e:
|
| 289 |
+
print(f"Google Search error: {e}")
|
| 290 |
+
print(f"Error type: {type(e).__name__}")
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
error_str = str(e).lower()
|
| 294 |
+
if any(keyword in error_str for keyword in ["403", "blocked", "quota", "limit", "exceeded"]):
|
| 295 |
+
print("Google Search API blocked/quota exceeded, using fallback...")
|
| 296 |
+
elif "invalid" in error_str or "unauthorized" in error_str:
|
| 297 |
+
print("API key issue, using fallback...")
|
| 298 |
+
|
| 299 |
+
return google_search_fallback(news_text)
|
| 300 |
+
|
| 301 |
+
def analyze_sources(search_results):
|
| 302 |
+
"""Check how trustworthy the news sources are"""
|
| 303 |
+
if not search_results:
|
| 304 |
+
return 0.50, 0.20, "No sources found"
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
credible_count = 0
|
| 308 |
+
total_sources = len(search_results)
|
| 309 |
+
|
| 310 |
+
for result in search_results:
|
| 311 |
+
domain = result['link'].split('/')[2] if '//' in result['link'] else ''
|
| 312 |
+
for source, credibility in CREDIBLE_SOURCES.items():
|
| 313 |
+
if source in domain:
|
| 314 |
+
credible_count += 1
|
| 315 |
+
break
|
| 316 |
+
|
| 317 |
+
source_credibility = credible_count / total_sources if total_sources > 0 else 0.50
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
popularity_score = min(1.0, total_sources / 5.0) # Normalize to 0-1
|
| 321 |
+
|
| 322 |
+
# Create a summary of what we found
|
| 323 |
+
if source_credibility > 0.7:
|
| 324 |
+
credibility_text = f"High credibility: {credible_count}/{total_sources} sources from reputable outlets"
|
| 325 |
+
elif source_credibility > 0.4:
|
| 326 |
+
credibility_text = f"Medium credibility: {credible_count}/{total_sources} sources from reputable outlets"
|
| 327 |
+
else:
|
| 328 |
+
credibility_text = f"Low credibility: {credible_count}/{total_sources} sources from reputable outlets"
|
| 329 |
+
|
| 330 |
+
return source_credibility, popularity_score, credibility_text
|
| 331 |
+
|
| 332 |
+
def analyze_source_support(news_text, search_results):
|
| 333 |
+
"""Check if the search results agree or disagree with the news"""
|
| 334 |
+
if not search_results:
|
| 335 |
+
return 0.5, "No sources to analyze"
|
| 336 |
+
|
| 337 |
+
support_count = 0
|
| 338 |
+
contradict_count = 0
|
| 339 |
+
total_sources = len(search_results)
|
| 340 |
+
|
| 341 |
+
# Look for years mentioned in the news
|
| 342 |
+
import re
|
| 343 |
+
news_years = re.findall(r'\b(20\d{2})\b', news_text)
|
| 344 |
+
news_year = news_years[0] if news_years else None
|
| 345 |
+
|
| 346 |
+
for result in search_results:
|
| 347 |
+
title_snippet = (result.get('title', '') + ' ' + result.get('snippet', '')).lower()
|
| 348 |
+
|
| 349 |
+
# See if the years match up
|
| 350 |
+
if news_year:
|
| 351 |
+
source_years = re.findall(r'\b(20\d{2})\b', title_snippet)
|
| 352 |
+
if source_years and news_year not in source_years:
|
| 353 |
+
contradict_count += 1
|
| 354 |
+
continue
|
| 355 |
+
|
| 356 |
+
# Look for words that suggest agreement or disagreement
|
| 357 |
+
support_keywords = ['confirm', 'verify', 'true', 'accurate', 'correct', 'xác nhận', 'chính xác', 'đúng']
|
| 358 |
+
contradict_keywords = ['false', 'fake', 'incorrect', 'wrong', 'sai', 'giả', 'không đúng']
|
| 359 |
+
|
| 360 |
+
support_score = sum(1 for keyword in support_keywords if keyword in title_snippet)
|
| 361 |
+
contradict_score = sum(1 for keyword in contradict_keywords if keyword in title_snippet)
|
| 362 |
+
|
| 363 |
+
if contradict_score > support_score:
|
| 364 |
+
contradict_count += 1
|
| 365 |
+
elif support_score > contradict_score:
|
| 366 |
+
support_count += 1
|
| 367 |
+
else:
|
| 368 |
+
# If unclear, assume slight support
|
| 369 |
+
support_count += 0.5
|
| 370 |
+
|
| 371 |
+
support_ratio = support_count / total_sources if total_sources > 0 else 0.5
|
| 372 |
+
|
| 373 |
+
if support_ratio > 0.7:
|
| 374 |
+
support_text = f"Sources strongly support the news: {support_count:.1f}/{total_sources} sources confirm"
|
| 375 |
+
elif support_ratio > 0.4:
|
| 376 |
+
support_text = f"Sources mixed: {support_count:.1f}/{total_sources} sources support, {contradict_count} contradict"
|
| 377 |
+
else:
|
| 378 |
+
support_text = f"Sources contradict the news: {contradict_count}/{total_sources} sources contradict"
|
| 379 |
+
|
| 380 |
+
return support_ratio, support_text
|
| 381 |
+
|
| 382 |
+
def analyze_with_gemini(news_text, search_results, distilbert_prediction, distilbert_confidence):
|
| 383 |
+
"""Use Gemini AI to analyze the news and compare with our model results"""
|
| 384 |
+
try:
|
| 385 |
+
# Try to use the latest Gemini model available
|
| 386 |
+
try:
|
| 387 |
+
model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
| 388 |
+
except:
|
| 389 |
+
try:
|
| 390 |
+
model = genai.GenerativeModel('gemini-2.5-flash')
|
| 391 |
+
except:
|
| 392 |
+
try:
|
| 393 |
+
model = genai.GenerativeModel('gemini-1.5-pro')
|
| 394 |
+
except:
|
| 395 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
| 396 |
+
|
| 397 |
+
# Format the search results for Gemini
|
| 398 |
+
search_summary = ""
|
| 399 |
+
if search_results:
|
| 400 |
+
search_summary = "Kết quả tìm kiếm Google:\n"
|
| 401 |
+
for i, result in enumerate(search_results[:5], 1):
|
| 402 |
+
search_summary += f"{i}. {result['title']}\n {result['snippet']}\n Nguồn: {result['link']}\n\n"
|
| 403 |
+
else:
|
| 404 |
+
search_summary = "Không tìm thấy kết quả tìm kiếm Google cho tin tức này. Điều này có thể do API bị giới hạn hoặc tin tức quá mới/chưa được đăng tải."
|
| 405 |
+
|
| 406 |
+
# Include our model results in the analysis
|
| 407 |
+
distilbert_analysis = ""
|
| 408 |
+
if distilbert_prediction:
|
| 409 |
+
distilbert_analysis = f"Phân tích DistilBERT: Dự đoán '{distilbert_prediction}' với độ tin cậy {distilbert_confidence:.3f}"
|
| 410 |
+
else:
|
| 411 |
+
distilbert_analysis = "DistilBERT: Không thể phân tích"
|
| 412 |
+
|
| 413 |
+
prompt = f"""
|
| 414 |
+
Hãy phân tích tin tức sau và đánh giá độ tin cậy của nó:
|
| 415 |
+
|
| 416 |
+
"{news_text}"
|
| 417 |
+
|
| 418 |
+
{search_summary}
|
| 419 |
+
|
| 420 |
+
{distilbert_analysis}
|
| 421 |
+
|
| 422 |
+
Lưu ý: Sử dụng kiến thức của bạn về các sự kiện, quy tắc và thông tin thực tế để đánh giá. Nếu không có kết quả tìm kiếm Google, hãy dựa vào hiểu biết của bạn.
|
| 423 |
+
|
| 424 |
+
Hãy cung cấp phân tích chi tiết bao gồm:
|
| 425 |
+
1. Đánh giá độ tin cậy (CAO/TRUNG BÌNH/THẤP)
|
| 426 |
+
2. Lý do đánh giá dựa trên kiến thức và logic
|
| 427 |
+
3. So sánh với kết quả DistilBERT
|
| 428 |
+
4. Khuyến nghị cho người đọc
|
| 429 |
+
|
| 430 |
+
Phân tích bằng tiếng Việt, ngắn gọn và dễ hiểu.
|
| 431 |
+
"""
|
| 432 |
+
|
| 433 |
+
print("Calling Gemini API...")
|
| 434 |
+
print(f"DEBUG - News text being analyzed: {news_text}")
|
| 435 |
+
print(f"DEBUG - Search results count: {len(search_results)}")
|
| 436 |
+
if search_results:
|
| 437 |
+
print(f"DEBUG - First search result title: {search_results[0].get('title', 'No title')}")
|
| 438 |
+
|
| 439 |
+
# Use consistent settings to get reliable results
|
| 440 |
+
generation_config = genai.types.GenerationConfig(
|
| 441 |
+
temperature=0.1, # Low temperature for more consistent results
|
| 442 |
+
top_p=0.8, # Focus on most likely tokens
|
| 443 |
+
top_k=20, # Limit vocabulary choices
|
| 444 |
+
max_output_tokens=1000
|
| 445 |
+
)
|
| 446 |
+
response = model.generate_content(prompt, generation_config=generation_config)
|
| 447 |
+
print("Gemini API response received successfully")
|
| 448 |
+
return response.text
|
| 449 |
+
|
| 450 |
+
except Exception as e:
|
| 451 |
+
print(f"Gemini analysis error: {e}")
|
| 452 |
+
print(f"Error type: {type(e).__name__}")
|
| 453 |
+
|
| 454 |
+
# If we hit the API limit, provide a basic analysis
|
| 455 |
+
if "429" in str(e) or "quota" in str(e).lower():
|
| 456 |
+
print("Gemini API quota exceeded, providing fallback analysis...")
|
| 457 |
+
fallback_analysis = f"""
|
| 458 |
+
Phân tích thay thế (do giới hạn API):
|
| 459 |
+
- Tin tức: {news_text}
|
| 460 |
+
- Phân tích DistilBERT: {distilbert_prediction} (độ tin cậy: {distilbert_confidence:.3f})
|
| 461 |
+
- Kết quả tìm kiếm: {len(search_results) if search_results else 0} nguồn
|
| 462 |
+
- Đánh giá: Dựa trên phân tích mô hình AI, tin tức này có khả năng {distilbert_prediction.lower() if distilbert_prediction else 'không xác định'} với độ tin cậy {distilbert_confidence:.1% if distilbert_confidence else 0}.
|
| 463 |
+
"""
|
| 464 |
+
return fallback_analysis
|
| 465 |
+
|
| 466 |
+
# For other errors, see what models are available
|
| 467 |
+
try:
|
| 468 |
+
models = genai.list_models()
|
| 469 |
+
print("Available models:")
|
| 470 |
+
for model in models:
|
| 471 |
+
if 'gemini' in model.name.lower():
|
| 472 |
+
print(f" - {model.name}")
|
| 473 |
+
except Exception as list_error:
|
| 474 |
+
print(f"Could not list models: {list_error}")
|
| 475 |
+
return f"Lỗi phân tích Gemini: {e}"
|
| 476 |
+
|
| 477 |
+
def calculate_combined_confidence(distilbert_prediction, distilbert_confidence, source_credibility, popularity_score, gemini_analysis, source_support=0.5):
|
| 478 |
+
"""Calculate combined confidence from all three tools"""
|
| 479 |
+
|
| 480 |
+
# Base confidence from DistilBERT
|
| 481 |
+
if distilbert_prediction == "REAL":
|
| 482 |
+
base_confidence = distilbert_confidence
|
| 483 |
+
else:
|
| 484 |
+
base_confidence = 1 - distilbert_confidence
|
| 485 |
+
|
| 486 |
+
# Adjust based on source credibility (stronger adjustments)
|
| 487 |
+
if source_credibility > 0.7:
|
| 488 |
+
credibility_adjustment = 0.2 # Increased from 0.1
|
| 489 |
+
elif source_credibility > 0.4:
|
| 490 |
+
credibility_adjustment = 0.05 # Small positive adjustment
|
| 491 |
+
else:
|
| 492 |
+
credibility_adjustment = -0.1
|
| 493 |
+
|
| 494 |
+
# Adjust based on popularity
|
| 495 |
+
if popularity_score > 0.7:
|
| 496 |
+
popularity_adjustment = 0.1 # Increased from 0.05
|
| 497 |
+
elif popularity_score > 0.4:
|
| 498 |
+
popularity_adjustment = 0.0
|
| 499 |
+
else:
|
| 500 |
+
popularity_adjustment = -0.05
|
| 501 |
+
|
| 502 |
+
# Adjust based on source support (whether sources support or contradict the news)
|
| 503 |
+
if source_support > 0.7:
|
| 504 |
+
support_adjustment = 0.15 # Sources strongly support
|
| 505 |
+
elif source_support > 0.4:
|
| 506 |
+
support_adjustment = 0.0 # Sources are neutral
|
| 507 |
+
else:
|
| 508 |
+
support_adjustment = -0.15 # Sources contradict
|
| 509 |
+
|
| 510 |
+
# Adjust based on Gemini analysis (stronger adjustments)
|
| 511 |
+
gemini_lower = gemini_analysis.lower()
|
| 512 |
+
if "độ tin cậy cao" in gemini_lower or "tin cậy cao" in gemini_lower or "cao" in gemini_lower:
|
| 513 |
+
gemini_adjustment = 0.2 # Increased from 0.1
|
| 514 |
+
elif "độ tin cậy thấp" in gemini_lower or "tin cậy thấp" in gemini_lower or "thấp" in gemini_lower:
|
| 515 |
+
gemini_adjustment = -0.2 # Increased from -0.1
|
| 516 |
+
else:
|
| 517 |
+
gemini_adjustment = 0.0
|
| 518 |
+
|
| 519 |
+
# Special case: If DistilBERT confidence is very low but sources and Gemini agree it's real
|
| 520 |
+
if (distilbert_confidence < 0.6 and
|
| 521 |
+
source_credibility > 0.6 and
|
| 522 |
+
("cao" in gemini_lower or "chính xác" in gemini_lower or "đáng tin cậy" in gemini_lower) and
|
| 523 |
+
not ("thấp" in gemini_lower or "giả" in gemini_lower or "fake" in gemini_lower)):
|
| 524 |
+
# Override with higher confidence ONLY if Gemini says it's real
|
| 525 |
+
base_confidence = 0.8
|
| 526 |
+
print("Overriding low DistilBERT confidence due to strong source and Gemini agreement for REAL")
|
| 527 |
+
|
| 528 |
+
# Special case: If DistilBERT and Gemini both say FAKE, respect that
|
| 529 |
+
elif (distilbert_prediction == "FAKE" and
|
| 530 |
+
("thấp" in gemini_lower or "giả" in gemini_lower or "fake" in gemini_lower)):
|
| 531 |
+
# Override with low confidence for FAKE
|
| 532 |
+
base_confidence = 0.2
|
| 533 |
+
print("Overriding confidence due to DistilBERT and Gemini agreement for FAKE")
|
| 534 |
+
|
| 535 |
+
# Calculate final confidence
|
| 536 |
+
final_confidence = base_confidence + credibility_adjustment + popularity_adjustment + gemini_adjustment + support_adjustment
|
| 537 |
+
final_confidence = max(0.05, min(0.95, final_confidence))
|
| 538 |
+
|
| 539 |
+
return final_confidence
|
| 540 |
+
|
| 541 |
+
def analyze_news(news_text):
|
| 542 |
+
"""Main analysis function combining all three tools"""
|
| 543 |
+
try:
|
| 544 |
+
if not news_text.strip():
|
| 545 |
+
return "Vui lòng nhập tin tức cần phân tích.", "0%", "0%", "Chưa có dữ liệu"
|
| 546 |
+
|
| 547 |
+
print(f"Analyzing: {news_text[:50]}...")
|
| 548 |
+
|
| 549 |
+
# Step 1: Search Google for related information
|
| 550 |
+
print("1. Running Google Search...")
|
| 551 |
+
try:
|
| 552 |
+
search_results = google_search(news_text)
|
| 553 |
+
except Exception as e:
|
| 554 |
+
print(f"Google Search error: {e}")
|
| 555 |
+
search_results = []
|
| 556 |
+
|
| 557 |
+
# Step 2: Run our trained model
|
| 558 |
+
print("2. Running DistilBERT analysis...")
|
| 559 |
+
try:
|
| 560 |
+
distilbert_prediction, distilbert_confidence, real_score, fake_score = predict_with_distilbert(news_text)
|
| 561 |
+
except Exception as e:
|
| 562 |
+
print(f"DistilBERT analysis error: {e}")
|
| 563 |
+
distilbert_prediction, distilbert_confidence, real_score, fake_score = None, None, None, None
|
| 564 |
+
|
| 565 |
+
# Step 3: Check the sources we found
|
| 566 |
+
print("3. Analyzing sources and popularity...")
|
| 567 |
+
try:
|
| 568 |
+
source_credibility, popularity_score, credibility_text = analyze_sources(search_results)
|
| 569 |
+
source_support, support_text = analyze_source_support(news_text, search_results)
|
| 570 |
+
except Exception as e:
|
| 571 |
+
print(f"Source analysis error: {e}")
|
| 572 |
+
source_credibility, popularity_score, credibility_text = 0.5, 0.2, "Lỗi phân tích nguồn"
|
| 573 |
+
source_support, support_text = 0.5, "Lỗi phân tích hỗ trợ nguồn"
|
| 574 |
+
|
| 575 |
+
# Step 4: Get Gemini AI analysis
|
| 576 |
+
print("4. Running Gemini analysis...")
|
| 577 |
+
try:
|
| 578 |
+
gemini_analysis = analyze_with_gemini(news_text, search_results, distilbert_prediction, distilbert_confidence)
|
| 579 |
+
except Exception as e:
|
| 580 |
+
print(f"Gemini analysis error: {e}")
|
| 581 |
+
gemini_analysis = f"Lỗi phân tích Gemini: {str(e)}"
|
| 582 |
+
|
| 583 |
+
# Step 5: Combine everything into final result
|
| 584 |
+
print("5. Calculating combined confidence...")
|
| 585 |
+
print(f" DistilBERT: {distilbert_prediction} ({distilbert_confidence:.3f})")
|
| 586 |
+
print(f" Source credibility: {source_credibility:.3f}")
|
| 587 |
+
print(f" Source support: {source_support:.3f}")
|
| 588 |
+
print(f" Popularity: {popularity_score:.3f}")
|
| 589 |
+
try:
|
| 590 |
+
combined_confidence = calculate_combined_confidence(
|
| 591 |
+
distilbert_prediction, distilbert_confidence,
|
| 592 |
+
source_credibility, popularity_score, gemini_analysis, source_support
|
| 593 |
+
)
|
| 594 |
+
print(f" Final combined confidence: {combined_confidence:.3f}")
|
| 595 |
+
except Exception as e:
|
| 596 |
+
print(f"Confidence calculation error: {e}")
|
| 597 |
+
combined_confidence = 0.5 # Default to neutral
|
| 598 |
+
|
| 599 |
+
# Step 6: Format the final results
|
| 600 |
+
real_confidence = combined_confidence
|
| 601 |
+
fake_confidence = 1 - combined_confidence
|
| 602 |
+
|
| 603 |
+
# Build the detailed report
|
| 604 |
+
detailed_analysis = f"""
|
| 605 |
+
# PHÂN TÍCH TIN TỨC: {news_text[:50]}...
|
| 606 |
+
|
| 607 |
+
## DistilBERT Analysis
|
| 608 |
+
**Dự đoán**: {distilbert_prediction if distilbert_prediction else 'Không thể phân tích'}
|
| 609 |
+
**Độ tin cậy**: {f"{distilbert_confidence:.3f}" if distilbert_confidence else 'N/A'}
|
| 610 |
+
**Real Score**: {f"{real_score:.3f}" if real_score else 'N/A'}
|
| 611 |
+
**Fake Score**: {f"{fake_score:.3f}" if fake_score else 'N/A'}
|
| 612 |
+
|
| 613 |
+
## Google Search Results
|
| 614 |
+
**Số lượng kết quả**: {len(search_results)}
|
| 615 |
+
**Độ tin cậy nguồn**: {source_credibility:.3f}
|
| 616 |
+
**Mức độ phổ biến**: {popularity_score:.3f}
|
| 617 |
+
**Phân tích nguồn**: {credibility_text}
|
| 618 |
+
**Hỗ trợ nguồn**: {source_support:.3f}
|
| 619 |
+
**Phân tích hỗ trợ**: {support_text}
|
| 620 |
+
|
| 621 |
+
## Gemini AI Analysis
|
| 622 |
+
{gemini_analysis}
|
| 623 |
+
|
| 624 |
+
## Kết quả cuối cùng
|
| 625 |
+
**Độ tin cậy tổng hợp**: {combined_confidence:.3f}
|
| 626 |
+
**Real**: {real_confidence:.3f}
|
| 627 |
+
**Fake**: {fake_confidence:.3f}
|
| 628 |
+
"""
|
| 629 |
+
|
| 630 |
+
return detailed_analysis, f"Độ chắc chắn là tin thật: {real_confidence:.1%}", f"Độ chắc chắn là tin giả: {fake_confidence:.1%}"
|
| 631 |
+
|
| 632 |
+
except Exception as e:
|
| 633 |
+
error_message = f"Lỗi phân tích tổng thể: {str(e)}"
|
| 634 |
+
print(error_message)
|
| 635 |
+
return error_message, "Độ chắc chắn là tin thật: 0%", "Độ chắc chắn là tin giả: 0%"
|
| 636 |
+
|
| 637 |
+
# --- GRADIO INTERFACE ---
|
| 638 |
+
def create_interface():
|
| 639 |
+
with gr.Blocks(title="Vietnamese Fake News Detection System", theme=gr.themes.Soft()) as interface:
|
| 640 |
+
gr.Markdown("""
|
| 641 |
+
# Vietnamese Fake News Detection System
|
| 642 |
+
## Powered by Google Search + Gemini AI + DistilBERT
|
| 643 |
+
|
| 644 |
+
**Hệ thống phát hiện tin giả tiếng Việt sử dụng 3 công cụ mạnh mẽ:**
|
| 645 |
+
- **Google Search**: Tìm kiếm thông tin thực tế
|
| 646 |
+
- **Gemini AI**: Phân tích thông minh
|
| 647 |
+
- **DistilBERT**: Mô hình AI được huấn luyện đặc biệt cho tiếng Việt
|
| 648 |
+
|
| 649 |
+
**Lưu ý**: Kết quả có thể thay đổi nhẹ giữa các lần phân tích do tính chất AI của Gemini, nhưng độ chính xác tổng thể vẫn được đảm bảo.
|
| 650 |
+
""")
|
| 651 |
+
|
| 652 |
+
with gr.Row():
|
| 653 |
+
with gr.Column(scale=2):
|
| 654 |
+
news_input = gr.Textbox(
|
| 655 |
+
label="Tin tức cần phân tích",
|
| 656 |
+
placeholder="Nhập tin tức tiếng Việt cần kiểm tra...",
|
| 657 |
+
lines=4
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
analyze_btn = gr.Button(" Phân tích với AI nâng cao", variant="primary", size="lg")
|
| 661 |
+
|
| 662 |
+
with gr.Column(scale=1):
|
| 663 |
+
gr.Markdown("### Kết quả phân tích")
|
| 664 |
+
real_confidence = gr.Label("Độ chắc chắn là tin thật", value="Độ chắc chắn là tin thật: 0%")
|
| 665 |
+
fake_confidence = gr.Label("Độ chắc chắn là tin giả", value="Độ chắc chắn là tin giả: 0%")
|
| 666 |
+
|
| 667 |
+
detailed_analysis = gr.Markdown("### Phân tích chi tiết sẽ hiển thị ở đây...")
|
| 668 |
+
|
| 669 |
+
# Event handlers
|
| 670 |
+
analyze_btn.click(
|
| 671 |
+
fn=analyze_news,
|
| 672 |
+
inputs=[news_input],
|
| 673 |
+
outputs=[detailed_analysis, real_confidence, fake_confidence]
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
return interface
|
| 678 |
+
|
| 679 |
+
def test_google_search():
|
| 680 |
+
"""Test Google Search API functionality"""
|
| 681 |
+
print("Testing Google Search API...")
|
| 682 |
+
print("=" * 50)
|
| 683 |
+
|
| 684 |
+
# Test queries
|
| 685 |
+
test_queries = [
|
| 686 |
+
"Argentina World Cup 2022",
|
| 687 |
+
"Vietnam COVID-19 news",
|
| 688 |
+
"Tin tức Việt Nam"
|
| 689 |
+
]
|
| 690 |
+
|
| 691 |
+
results_found = 0
|
| 692 |
+
|
| 693 |
+
for i, query in enumerate(test_queries, 1):
|
| 694 |
+
print(f"\nTest {i}: '{query}'")
|
| 695 |
+
print("-" * 30)
|
| 696 |
+
|
| 697 |
+
try:
|
| 698 |
+
results = google_search(query)
|
| 699 |
+
print(f"Results: {len(results)} found")
|
| 700 |
+
|
| 701 |
+
if results:
|
| 702 |
+
results_found += 1
|
| 703 |
+
print(f"First result: {results[0]['title'][:50]}...")
|
| 704 |
+
print(f" Link: {results[0]['link']}")
|
| 705 |
+
else:
|
| 706 |
+
print("No results found")
|
| 707 |
+
|
| 708 |
+
except Exception as e:
|
| 709 |
+
print(f"Error: {e}")
|
| 710 |
+
|
| 711 |
+
print(f"\nTest Summary: {results_found}/{len(test_queries)} tests passed")
|
| 712 |
+
|
| 713 |
+
if results_found == 0:
|
| 714 |
+
print("\nGoogle Search is not working!")
|
| 715 |
+
print("Possible solutions:")
|
| 716 |
+
print(" 1. Check API quota in Google Cloud Console")
|
| 717 |
+
print(" 2. Verify API keys are correct")
|
| 718 |
+
print(" 3. Ensure Custom Search API is enabled")
|
| 719 |
+
print(" 4. Check Search Engine ID is valid")
|
| 720 |
+
elif results_found < len(test_queries):
|
| 721 |
+
print("\nGoogle Search partially working")
|
| 722 |
+
print("Some queries work, others don't - check query formatting")
|
| 723 |
+
else:
|
| 724 |
+
print("\nGoogle Search is working perfectly!")
|
| 725 |
+
|
| 726 |
+
return results_found > 0
|
| 727 |
+
|
| 728 |
+
def test_complete_system():
|
| 729 |
+
"""Test the complete fake news detection system"""
|
| 730 |
+
print("Testing Complete Vietnamese Fake News Detection System")
|
| 731 |
+
print("=" * 60)
|
| 732 |
+
|
| 733 |
+
# Test cases
|
| 734 |
+
test_cases = [
|
| 735 |
+
"Argentina vô địch World Cup 2022",
|
| 736 |
+
"Hôm nay trời mưa ở Hà Nội",
|
| 737 |
+
"COVID-19 đã được chữa khỏi hoàn toàn"
|
| 738 |
+
]
|
| 739 |
+
|
| 740 |
+
for i, test_text in enumerate(test_cases, 1):
|
| 741 |
+
print(f"\nTest Case {i}: '{test_text}'")
|
| 742 |
+
print("-" * 40)
|
| 743 |
+
|
| 744 |
+
try:
|
| 745 |
+
result = analyze_news(test_text)
|
| 746 |
+
print("Analysis completed successfully")
|
| 747 |
+
print(f"Result type: {type(result)}")
|
| 748 |
+
except Exception as e:
|
| 749 |
+
print(f"Analysis failed: {e}")
|
| 750 |
+
|
| 751 |
+
# --- LAUNCH APP ---
|
| 752 |
+
if __name__ == "__main__":
|
| 753 |
+
print("Starting Vietnamese Fake News Detection System...")
|
| 754 |
+
print("Tools integrated: Google Search + Gemini AI + DistilBERT")
|
| 755 |
+
|
| 756 |
+
# Uncomment the line below to run tests first
|
| 757 |
+
# test_google_search()
|
| 758 |
+
|
| 759 |
+
interface = create_interface()
|
| 760 |
+
interface.launch(
|
| 761 |
+
server_name="0.0.0.0",
|
| 762 |
+
server_port=7863, # Changed port to avoid conflict
|
| 763 |
+
share=True,
|
| 764 |
+
show_error=True
|
| 765 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core ML and AI libraries
|
| 2 |
+
torch>=2.0.0,<2.2.0
|
| 3 |
+
transformers>=4.30.0,<4.40.0
|
| 4 |
+
numpy>=1.21.0,<1.25.0
|
| 5 |
+
scikit-learn>=1.0.0,<1.4.0
|
| 6 |
+
|
| 7 |
+
# Web interface
|
| 8 |
+
gradio>=4.0.0,<4.15.0
|
| 9 |
+
|
| 10 |
+
# Google APIs
|
| 11 |
+
google-generativeai>=0.3.0,<0.4.0
|
| 12 |
+
google-api-python-client>=2.0.0,<2.110.0
|
| 13 |
+
|
| 14 |
+
# Data processing
|
| 15 |
+
pandas>=1.3.0,<2.1.0
|
| 16 |
+
|
| 17 |
+
# Additional dependencies for Hugging Face Spaces
|
| 18 |
+
accelerate>=0.20.0
|
| 19 |
+
safetensors>=0.3.0
|
| 20 |
+
tokenizers>=0.13.0
|
| 21 |
+
|
| 22 |
+
# Optional: For better performance
|
| 23 |
+
# sentencepiece>=0.1.99 # Uncomment if needed for tokenization
|
| 24 |
+
# protobuf>=3.20.0,<4.0.0 # Uncomment if needed for Google APIs
|