Nadil Karunarathna
commited on
Commit
·
9ba0dd3
1
Parent(s):
faa4aa2
wip
Browse files- app.py +37 -7
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -1,16 +1,46 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def init():
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
print("Model or environment initialized.")
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
init()
|
| 14 |
|
| 15 |
-
demo = gr.Interface(fn=correct, inputs="text", outputs="text")
|
| 16 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import re
|
| 4 |
|
| 5 |
+
model = None
|
| 6 |
+
tokenizer = None
|
| 7 |
+
device = "cpu"
|
| 8 |
|
| 9 |
def init():
|
| 10 |
+
from transformers import MT5ForConditionalGeneration, T5TokenizerFast
|
| 11 |
+
global model, tokenizer
|
|
|
|
| 12 |
|
| 13 |
+
model_path = "lm-spell/mt5-base-ft-ssc"
|
| 14 |
+
model = MT5ForConditionalGeneration.from_pretrained(model_path).to(device)
|
| 15 |
+
tokenizer = T5TokenizerFast.from_pretrained("google/mt5-base")
|
| 16 |
+
tokenizer.add_special_tokens({'additional_special_tokens': ['<ZWJ>']})
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def correct(text):
|
| 20 |
+
model.eval()
|
| 21 |
+
|
| 22 |
+
text = re.sub(r'\u200d', '<ZWJ>', text)
|
| 23 |
+
inputs = tokenizer(text, return_tensors='pt', padding='max_length', truncation=True, max_length=128)
|
| 24 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 25 |
+
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
| 28 |
+
prediction = outputs[0]
|
| 29 |
+
|
| 30 |
+
special_token_id_to_keep = tokenizer.convert_tokens_to_ids('<ZWJ>')
|
| 31 |
+
all_special_ids = torch.tensor(tokenizer.all_special_ids, dtype=torch.int64).to(device)
|
| 32 |
+
special_token_tensor = torch.tensor([special_token_id_to_keep], dtype=torch.int64).to(device)
|
| 33 |
+
|
| 34 |
+
pred_tokens = prediction.to(device)
|
| 35 |
+
tokens_tensor = pred_tokens.clone().detach().to(dtype=torch.int64)
|
| 36 |
+
mask = (tokens_tensor == special_token_tensor) | (~torch.isin(tokens_tensor, all_special_ids))
|
| 37 |
+
filtered_tokens = tokens_tensor[mask].tolist()
|
| 38 |
+
|
| 39 |
+
prediction_decoded = tokenizer.decode(filtered_tokens, skip_special_tokens=False).replace('\n', '').strip()
|
| 40 |
+
|
| 41 |
+
return re.sub(r'<ZWJ>\s?', '\u200d', prediction_decoded)
|
| 42 |
|
| 43 |
init()
|
| 44 |
|
| 45 |
+
demo = gr.Interface(fn=correct, inputs="text", outputs="text", share=True)
|
| 46 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1 +1,3 @@
|
|
| 1 |
-
gradio
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch==2.5.1
|
| 3 |
+
transformers==4.51.3
|