Spaces:
Running
Running
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
from PIL import Image | |
import numpy as np | |
class VitBase(): | |
def __init__(self): | |
self.feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') | |
self.model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') | |
def extract_feature(self, imgs): | |
features = [] | |
for img in imgs: | |
feature = self.feature_extractor(images=img, return_tensors="tf") | |
print('keys: ', feature.keys()) | |
f = self.model(feature) | |
print('--> f', type(f)) | |
# print('type::', (feature['pixel_values'].shape)) | |
features.append(np.squeeze(feature['pixel_values'])) | |
print('shape:::',features[0].shape) | |
return features | |