mocap-ai / fbx_handler.py
Natsha's picture
Added docs and fixed the math for the data augmentation.
0514416
raw
history blame
52.6 kB
import pandas as pd
import numpy as np
from pathlib import Path
from typing import List, Union, Tuple
import h5py
# Import util libs.
import fbx
import itertools
# Import custom data.
import globals
import utils
def center_axis(a: Union[List[float], np.array]) -> np.array:
"""
Centers a list of floats.
:param a: List of floats to center.
:return: The centered list as a `np.array`.
"""
# Turn list into np array for optimized math.
if not isinstance(a, np.ndarray):
a = np.array(a)
# Find the centroid by subtracting the lowest value from the highest value.
_min = np.min(a)
_max = np.max(a)
_c = _max - (_max - _min) * 0.5
a -= _c
return a
def append_zero(arr: np.ndarray) -> np.ndarray:
"""
Appends a zero array to the end of an array.
:param arr: `np.array` to fill.
:return: `np.array` with a zero array appended to the end.
"""
zeros = np.zeros((arr.shape[0], arr.shape[1], 1), dtype=float)
return np.concatenate((arr, zeros), axis=-1)
def append_one(arr: np.ndarray) -> np.ndarray:
"""
Appends a one array to the end of an array.
:param arr: `np.array` to fill.
:return: `np.array` with a one array appended to the end.
"""
ones = np.ones((arr.shape[0], arr.shape[1], 1), dtype=float)
return np.concatenate((arr, ones), axis=-1)
def merge_tdc(actor_classes: np.array,
marker_classes: np.array,
translation_vectors: np.array,
rotation_vectors: np.array,
scale_vectors: np.array,
ordered: bool = True) -> np.array:
"""
Merges the given arrays into a single array of shape (n_frames, pc_size, 14).
:param actor_classes: `np.array` of actor class labels.
:param marker_classes: `np.array` of marker class labels.
:param translation_vectors: `np.array` of translation vectors (3 values each).
:param rotation_vectors: `np.array` of Euler rotation angles (3 values each).
:param scale_vectors: `np.array` of scale factors (3 values each).
:param ordered: Whether to sort the cloud by actor and marker classes.
:return: Merged `np.array` of shape (n_frames, pc_size, 14).
"""
# Actor and marker classes enter as shape (x, 1024), so use np.expand_dims to create a new dimension at the end.
# Return the concatenated array of shape (x, 1024, 14), which matches the original timeline dense cloud before
# splitting it into sub arrays.
tdc = np.concatenate((np.expand_dims(actor_classes, -1),
np.expand_dims(marker_classes, -1),
append_zero(translation_vectors),
append_zero(rotation_vectors),
append_one(scale_vectors)), axis=2)
if ordered:
tdc = sort_cloud(tdc)
return tdc
def shuffle_tdc(tdc: np.array) -> np.array:
"""
Shuffles the given timeline dense cloud at its second dimension, the marker rows.
This will not mess up the transforms.
:param tdc: `np.array` to shuffle.
:return: shuffled `np.array`.
"""
# This function only works for arrays with 3 dimensions.
if tdc.ndim != 3:
raise ValueError(f'Array does not have 3 dimensions: {tdc.ndim}/3.')
# Shuffle the frames.
for i in range(tdc.shape[0]):
np.random.shuffle(tdc[i])
return tdc
def sort_cloud(cloud: np.array) -> np.array:
"""
Convenience function to sort a timeline dense cloud by actor and marker classes.
Not required.
:param cloud: `np.array` point cloud to sort.
:return: Sorted `np.array` point cloud.
"""
# Extract the first two elements of the third dimension
actor_classes = cloud[:, :, 0]
marker_classes = cloud[:, :, 1]
# Create an empty array with the same shape as the input array
sorted_tdc = np.empty_like(cloud)
# Sort the input array row by row using the first two elements of the third dimension
for i in range(cloud.shape[0]):
# Get the sorting indices for the current row
sorted_indices = np.lexsort((marker_classes[i], actor_classes[i]))
# Sort the current row using the sorted indices
sorted_tdc[i] = cloud[i, sorted_indices]
return sorted_tdc
def create_keyframe(anim_curve: fbx.FbxAnimCurve, frame: int, value: float) -> None:
"""
Creates a keyframe at the given frame number on the given animation curve.
:param anim_curve: `fbx.FbxAnimCurve` node to add the keyframe to.
:param frame: `int` frame number at which to add the keyframe.
:param value: `float` value that the keyframe will have.
:return: True
"""
# Create an FbxTime object with the given frame number
t = fbx.FbxTime()
t.SetFrame(frame)
# Create a new keyframe with the specified value
key_index = anim_curve.KeyAdd(t)[0]
anim_curve.KeySetValue(key_index, value)
return
def get_child_node_by_name(parent_node: fbx.FbxNode, name: str, ignore_namespace: bool = False) \
-> Union[fbx.FbxNode, None]:
"""
Gets the child node with the given name.
:param parent_node: `fbx.FbxNode` to get the child node from.
:param name: `str` name of the child node to get.
:param ignore_namespace: `bool` whether to ignore the namespace in the node name.
:return: `fbx.FbxNode` child node with the given name, if it exists, else None.
"""
# Loop through all child nodes of the parent node.
for c in range(parent_node.GetChildCount()):
# Get the child node.
child = parent_node.GetChild(c)
# Check if the name of the child node matches the given name.
if match_name(child, name, ignore_namespace):
# If it matches, return the child node.
return child
# If no child node matches the given name, return None.
return None
def match_name(node: fbx.FbxNode, name: str, ignore_namespace: bool = True) -> bool:
"""
Checks if the given node's name matches the given name.
:param node: `fbx.FbxNode` to check.
:param name: `str` name to match.
:param ignore_namespace: `bool` whether to ignore the namespace in the node name.
"""
# get the name of the node
node_name = node.GetName()
# if ignore_namespace is True, remove the namespace from the node name
if ignore_namespace:
node_name = node_name.split(':')[-1]
# return True if the node name matches the provided name, False otherwise
return node_name == name
def array_to_dict(tsc: np.array, start_frame: int = 0) -> dict:
"""
Converts an `np.array` timeline sparse cloud to a dictionary structured for keyframed animation.
:param tsc: `np.array` timeline sparse cloud to process.
:param start_frame: Optional `int` frame at which the animation starts, useful for timecode.
:return: `dict` optimized for retrieving keyframe info.
"""
# Initialize an empty dictionary.
result = {}
# Iterate over the first dimension (frames) and second dimension (markers).
for frame, node in itertools.product(range(tsc.shape[0]), range(tsc.shape[1])):
# Extract the actor class, node class, and translation vector.
actor_class = int(tsc[frame, node, 0])
marker_class = int(tsc[frame, node, 1])
# If actor or marker class is predicted to be 0 (unlabeled marker), then skip adding it to the dict,
# because we only want to keyframe labeled markers.
if actor_class == 0 or marker_class == 0:
continue
# Just to be sure, forcing the last numbers of each array to be the correct values.
# Also check self.get_world_transform() for this.
translations = tsc[frame, node, 2:5] + np.array([0.0])
rotations = tsc[frame, node, 6:9] + np.array([0.0])
scales = tsc[frame, node, 10:13] + np.array([1.0])
# Build a world transform matrix from the transform values.
world_matrix = fbx.FbxAMatrix()
world_matrix.SetT(fbx.FbxVector4(*translations))
world_matrix.SetR(fbx.FbxVector4(*rotations))
world_matrix.SetS(fbx.FbxVector4(*scales))
# Create the actor dictionary if it doesn't exist.
if actor_class not in result:
result[actor_class] = {}
# Create the node dictionary if it doesn't exist.
if marker_class not in result[actor_class]:
result[actor_class][marker_class] = {}
# Add the frame number and translation vector to the node dictionary.
result[actor_class][marker_class][frame + start_frame] = world_matrix
return result
def world_to_local_transform(node: fbx.FbxNode, world_transform: fbx.FbxAMatrix, frame: int) -> \
Tuple[List[float], List[float], List[float]]:
"""
Takes a world transform and uses the node's parent world transform to calculate this node's
local transform at the given frame.
:param node: `fbx.FbxNode` that the given world transform belongs to.
:param world_transform: `fbx.FbxAMatrix` world transform to convert to local transform.
:param frame: `int` frame number at which to evaluate the parent's world transform.
:return:
"""
t = fbx.FbxTime()
t.SetFrame(frame)
if node.GetParent():
# Get the parent's world transform
parent_world_transform = node.GetParent().EvaluateGlobalTransform(t)
# Compute the inverse of the parent's world transform
parent_world_transform_inv = parent_world_transform.Inverse()
# Multiply the inverse of the parent's world transform by the world transform to get the local transform
lcl = parent_world_transform_inv * world_transform
else:
# If the node doesn't have a parent, the local transform is the same as the world transform
lcl = world_transform
return [lcl.GetT()[t] for t in range(3)], [lcl.GetR()[r] for r in range(3)], [lcl.GetS()[s] for s in range(3)]
def isolate_actor_from_tdc(tdc: np.array, actor: int) -> np.array:
"""
Returns all markers of the given actor in the timeline dense cloud.
:param tdc: `np.array` timeline dense cloud to filter.
:param actor: `int` actor class, starting at 1.
:return: `np.array` that contains only the markers of the given actor.
"""
if actor == 0:
raise ValueError('Second argument (actor) cannot be 0, must be higher.')
mask = tdc[:, :, 0] == float(actor)
return tdc[mask]
def split_tdc_into_actors(tdc: np.array) -> List[np.array]:
"""
Uses isolate_actor_from_tdc() to isolate all unique actors in the timeline dense cloud.
:param tdc: Timeline dense cloud to filter.
:return: List of isolated actor `np.array`.
"""
actor_count = len([x for x in np.unique(tdc[:, :, 0]) if x != 0.])
return [isolate_actor_from_tdc(tdc, i) for i in range(1, actor_count + 1)]
def get_keyed_frames_from_curve(curve: fbx.FbxAnimCurve, length: int = -1) -> List[fbx.FbxAnimCurveKey]:
"""
Returns a list of all the frames on the given curve.
:param curve: `fbx.FbxAnimCurve` to get frames from.
:param length: Desired amount of frame numbers to return. If this is more than there are keyframes on the curve,
it pads 0s to the end. Default -1, which will not add any 0s.
:return: List of all the frames on the given curve.
"""
# Get all the frames on the curve.
frames = [curve.KeyGet(i).GetTime().GetFrameCount() for i in range(curve.KeyGetCount())]
# Calculate the difference between desired length and actual length of frames.
dif = length - len(frames)
# If desired length is greater than actual length and length is not -1, add 0s to the end.
if dif > 0 and length != -1:
frames += [0.] * dif
# Return the list of all frames on the curve.
return frames
def get_world_transforms(actor_idx: int, marker_idx: int, m: fbx.FbxNode,
r: List[int], c: fbx.FbxAnimCurve) -> List[List[float]]:
"""
For the given marker node, gets the world transform for each frame in r, and stores the translation, rotation
and scaling values as a list of lists. Stores the actor and marker classes at the start of this list of lists.
Optionally, if incl_keyed is 1, also stores the keyed frames as the last list.
Note: This function has to be passed the animation curve, because we need the animation layer to get the
animation curve. The animation layer is stored inside the FBXContainer class, to which we don't have access to here.
:param actor_idx: `int` actor class.
:param marker_idx: `int` marker class.
:param m: `fbx.FbxNode` to evaluate the world transform of at each frame.
:param r: `List[int]` list of frame numbers to evaluate the world transform at.
:param c: `fbx.FbxAnimCurve` node to read the keyframes from.
:return:
"""
# Create a list of zeros with the same length as r.
zeros = [0.0 for _ in range(len(r))]
# Create a list of ones with the same length as r.
ones = [1.0 for _ in range(len(r))]
# Create empty lists for each transformation parameter.
tx, ty, tz, rx, ry, rz, sx, sy, sz = [], [], [], [], [], [], [], [], []
# Create a list of actor classes with the same length as r.
actors = [actor_idx for _ in range(len(r))]
# Create a list of marker classes with the same length as r.
markers = [marker_idx for _ in range(len(r))]
# Create a new FbxTime object without a frame set yet.
t = fbx.FbxTime()
# For each frame in the given frame range (which does not need to start at 0),
# evaluate the world transform at each frame and store the relevant items into their respective lists.
for f in r:
t.SetFrame(f)
wt = m.EvaluateGlobalTransform(t)
wtt, wtr, wts = wt.GetT(), wt.GetR(), wt.GetS()
tx.append(wtt[0])
ty.append(wtt[1])
tz.append(wtt[2])
rx.append(wtr[0])
ry.append(wtr[1])
rz.append(wtr[2])
sx.append(wts[0])
sy.append(wts[1])
sz.append(wts[2])
# Get the keyed values.
keyed_frames = get_keyed_frames_from_curve(c)
# Then we check if any of the frame numbers are in the keyed frames, which means it had a keyframe and should be 1.
keyed_bools = [1 if f in keyed_frames else 0 for f in r]
# Finally, return the complete lists of lists.
return [
actors,
markers,
tx, ty, tz, zeros,
rx, ry, rz, zeros,
sx, sy, sz, ones,
r, keyed_bools
]
def get_children_of_parent(parent: fbx.FbxNode) -> List[fbx.FbxNode]:
"""
Returns a list of all the children of the given parent.
:param parent: `fbx.FbxNode` to get children from.
:return: List of `fbx.FbxNode` children.
"""
return [parent.GetChild(i) for i in range(parent.GetChildCount())]
def flatten_labeled_transforms(arr: np.array) -> np.array:
"""
Flattens the given array so that it has the shape (n_actors * n_frames, 15, 73).
:param arr: `np.array` to process.
:return: `np.array` of shape (n_actors * n_frames, 15, 73).
"""
# Transpose the array, so we get this order: (n_actors, n_frames, 15, 73).
# That way, we can stack the actors after each other instead of the frames
# (which would happen with the previous order).
flattened = arr.transpose(1, 0, 2, 3)
# Flatten the array, so we get a list of frames where with all actors stacked after each other.
# Reshapes to (n_actors * n_frames, 15, 73).
return np.concatenate(flattened, axis=0)
def replace_zeros_with_inf(arr: np.array) -> np.array:
"""
Replaces all transform values for each marker on each frame that was not keyed.
:param arr: `np.array` to process.
:return: `np.array` with updated values.
"""
# Find all labeled markers that have their keyed value set to 0 (which means they had no keyframe on tx),
# and set their transforms to np.inf.
mask = arr[:, -1] == 0
for i in range(arr.shape[0]):
arr[i, 2:-2, mask[i]] = np.inf
return arr
def scale_translations(arr: np.array, scale: float = 0.01,
dims: Tuple[float, float, float] = (10., 10., 10.)) -> np.array:
"""
Applies a scaling to the translation values in the given array.
:param arr: `np.array` that can either be a timeline dense cloud or translation vectors.
:param scale: `float` scaling factor.
:param dims: `tuple` of `float` values that determine the dimensions of the volume.
:return: Modified `np.array`.
"""
# If the second dimension has 3 elements, it is a translation vector of shape (tx, ty, tz).
# If it has 15 elements, it is a full marker row of shape (actor, marker, tx, ty, tz, tw, rx, ry, rz, rw, etc.).
start = 0 if arr.shape[0] == 3 else 2
# First multiply by self.scale, which turns centimeters to meters.
# Then divide by volume dimensions, to normalize to the total area of the capture volume.
arr[:, start + 0] *= scale / dims[0]
arr[:, start + 1] *= scale / dims[1]
arr[:, start + 2] *= scale / dims[2]
return arr
def transform_translations(arr: np.array, move_to_center: bool = True,
scale: float = 0.01, dims: Tuple[float, float, float] = (10., 10., 10.)) -> np.array:
"""
First moves the x and y values to their axis' center. Then scales all values to normalize them.
:param arr: `np.array` that can either be a timeline dense cloud or translation vectors.
:param move_to_center: Uses center_axis() to move the x and y translations to the center of their axes.
:param scale: `float` scaling factor.
:param dims: `tuple` of `float` values that determine the dimensions of the volume.
:return: Modified `np.array`.
"""
if move_to_center:
for frame in range(arr.shape[0]):
# Center the X axis values.
arr[frame, 2] = center_axis(arr[frame, 2])
# Center the Z axis values.
arr[frame, 4] = center_axis(arr[frame, 4])
return scale_translations(arr, scale, dims)
class FBXContainerBase:
def __init__(self, fbx_file: Path, debug: int = -1) -> None:
"""
Class that stores references to important nodes in an FBX file.
Offers utility functions to quickly load animation data.
:param fbx_file: `Path` to the file to load.
"""
self.input_fbx = fbx_file
self.debug = debug
# Initiate empty lists to store references to nodes.
self.parents = []
self.children = []
# Store names of the actors (all parent nodes that have the first 4 markers as children).
self.parent_names = []
def _init_scene(self) -> None:
"""
Stores scene, root, and time_mode properties.
Destroys the importer to remove the reference to the loaded file.
"""
# Create an FBX manager and importer.
self.manager = fbx.FbxManager.Create()
importer = fbx.FbxImporter.Create(self.manager, 'MyScene')
# Import the FBX file.
importer.Initialize(str(self.input_fbx))
self.scene = fbx.FbxScene.Create(self.manager, '')
importer.Import(self.scene)
self.root = self.scene.GetRootNode()
if self.root is None:
raise ValueError('No root node found.')
self.time_mode = self.scene.GetGlobalSettings().GetTimeMode()
fbx.FbxTime.SetGlobalTimeMode(self.time_mode)
# Destroy importer to remove reference to imported file.
# This will allow us to delete the uploaded file.
importer.Destroy()
def _init_anim(self) -> None:
"""
Stores the anim_stack, num_frames, start_frame, end_frame properties.
"""
# Get the animation stack and layer.
anim_stack = self.scene.GetCurrentAnimationStack()
self.anim_layer = anim_stack.GetSrcObject(fbx.FbxCriteria.ObjectType(fbx.FbxAnimLayer.ClassId), 0)
if self.anim_layer is None:
raise ValueError('No animation layer found.')
# Find the total number of frames to expect from the local time span.
local_time_span = anim_stack.GetLocalTimeSpan()
self.num_frames = int(local_time_span.GetDuration().GetFrameCount())
if self.num_frames == 0:
raise ValueError('Number of animated frames is 0.')
self.start_frame = local_time_span.GetStart().GetFrameCount()
self.end_frame = local_time_span.GetStop().GetFrameCount()
def _init_parents(self, names_to_look_for: List[str]) -> None:
"""
Goes through all root children (generation 1).
If a child has 4 markers as children, it is considered an actor (Shogun subject) and appended to actors
and actor_names list properties.
"""
ts = fbx.FbxTime()
ts.SetFrame(self.start_frame)
te = fbx.FbxTime()
te.SetFrame(self.end_frame)
# Find all parent nodes (/System, /Unlabeled_Markers, /Actor1, etc).
gen1_nodes = [self.root.GetChild(i) for i in range(self.root.GetChildCount())]
for gen1_node in gen1_nodes:
gen2_nodes = [gen1_node.GetChild(i) for i in
range(gen1_node.GetChildCount())] # Actor nodes (/Mimi/Hips, /Mimi/ARIEL, etc)
# If the list of names_to_look_for are children of this parent, it must be a parent.
gen2_names = [node.GetName().split(':')[-1] for node in gen2_nodes]
if all(name in gen2_names for name in names_to_look_for):
self.parent_names.append(gen1_node.GetName())
self.parents.append(gen1_node)
if len(self.parents) == 0:
raise ValueError('No parents found. A node is considered a parent ' +
'if it has the following child nodes: ' +
', '.join(names_to_look_for) + '.')
self.parent_count = len(self.parents)
def _init_children(self, child_names: List[str]) -> None:
"""
Goes through all parent nodes and stores references to its child nodes.
"""
for parent_node in self.parents:
family = {}
for child_name in child_names:
for parent_idx in range(parent_node.GetChildCount()):
child = parent_node.GetChild(parent_idx)
# Child name might have namespaces in it like this: Vera:ARIEL
# We want to match only on the actual name, so ignore namespaces.
if match_name(child, child_name, ignore_namespace=True):
family[child_name] = child
if len(family) != len(child_names):
raise ValueError(f'{parent_node.GetName()} does not have all children.')
self.children.append(family)
def _print(self, txt: str, lvl: int = 0) -> None:
if lvl <= self.debug:
print(txt)
def get_frame_range(self) -> List[int]:
"""
Replacement and improvement for:
`list(range(self.num_frames))`
If the animation does not start at frame 0, this will return a list that has the correct frames.
:return: List of `int` frame numbers that are between the start and end frame of the animation.
"""
return list(range(self.start_frame, self.end_frame))
def _check_parent(self, parent: int = 0):
"""
Safety check to see if the actor `int` is a valid number (to avoid out of range errors).
:param parent: `int` actor index, which should be between 0-max_actors.
"""
if not 0 <= parent <= self.parent_count:
raise ValueError(f'Actor index must be between 0 and {self.parent_count - 1} ({parent}).')
def convert_r(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> List[int]:
"""
Converts the value of r to a list of frame numbers, depending on what r is.
:param r: Custom frame range to use.
:return: List of `int` frame numbers (doesn't have to start at 0).
"""
# If r is one int, use 0 as start frame. If r is higher than the total frames, limit the range.
if isinstance(r, int):
r = list(range(self.num_frames)) if r > self.num_frames else list(range(r))
# A tuple of 2 indicates a frame range without step.
elif isinstance(r, tuple) and len(r) == 2:
# If the requested frame range is longer than the total frames, limit the range.
if r[1] - r[0] > self.num_frames:
r = list(range(r[0], r[0] + self.num_frames))
else:
r = list(range(r[0], r[1]))
# A tuple of 3 indicates a frame range with step.
elif isinstance(r, tuple) and len(r) == 3:
# If the requested frame range is longer than the total frames, limit the range.
if r[1] - r[0] > self.num_frames:
r = list(range(r[0], r[0] + self.num_frames, r[2]))
else:
r = list(range(r[0], r[1], r[2]))
# If r is None, return the default frame range.
else:
r = self.get_frame_range()
return r
def get_parent_node_by_name(self, parent_name: str, ignore_namespace: bool = True) -> Union[fbx.FbxNode, None]:
"""
Utility function to get a parent node reference by name.
:param parent_name: `str` name that will be looked for in the node name.
:param ignore_namespace: `bool` Whether to ignore namespaces in a node's name.
:return:
"""
# Find all parent nodes (/System, /Unlabeled_Markers, /Actor1, etc).
parent_nodes = [self.root.GetChild(i) for i in range(self.root.GetChildCount())]
return next(
(
parent_node
for parent_node in parent_nodes
if match_name(parent_node, parent_name, ignore_namespace=ignore_namespace)
),
None,
)
def get_child_by_name(self, parent: int, name: str):
"""
Returns the reference to the parent's direct child.
:param parent: `int` parent index.
:param name: `str` child name.
:return: `fbx.FbxNode` reference.
"""
self._check_parent(parent)
return self.children[parent][name]
def get_node_by_path(self, path: str) -> fbx.FbxNode:
"""
Utility function to retrieve a node reference from a path like /Actor1/Hips/UpperLeg_l.
:param path: `str` path with forward slashes to follow.
:return: `fbx.FbxNode` reference to that node.
"""
# Split the path into node names.
node_names = [x for x in path.split('/') if x]
# Start the list of node references with the parent node that has its own function.
nodes = [self.get_parent_node_by_name(node_names[0], False)]
# Extend the list with each following child node of the previous parent.
nodes.extend(
get_child_node_by_name(nodes[idx], node_name)
for idx, node_name in enumerate(node_names[1:])
)
# Return the last node in the chain, which will be the node we were looking for.
return nodes[-1]
def get_hierarchy(self, start: fbx.FbxNode, hierarchy: List = None) -> List[fbx.FbxNode]:
"""
Returns the hierarchy under the start node.
:param hierarchy: Hierarchical `List` of `fbx.FbxNode` references.
:param start: `fbx.FbxNode` that will be used as starting point for finding the leaf nodes.
:return:
"""
if hierarchy is None:
hierarchy = []
hierarchy.append(start)
children = get_children_of_parent(start)
for child in children:
self.get_hierarchy(child, hierarchy)
return hierarchy
def remove_node(self, node: fbx.FbxNode, recursive: bool = False) -> bool:
"""
Removes a node by reference from the scene.
:param node: `fbx.FbxNode` to remove.
:param recursive: `bool` Apply deletion recursively.
:return: True if success.
"""
if recursive:
children = [node.GetChild(c) for c in range(node.GetChildCount())]
for child in children:
self.remove_node(child, True)
# Disconnect the marker node from its parent
node.GetParent().RemoveChild(node)
# Remove the marker node from the scene
self.scene.RemoveNode(node)
return True
class FBXContainer(FBXContainerBase):
def __init__(self, fbx_file: Path,
volume_dims: Tuple[float] = (10., 10., 10.),
max_actors: int = 8,
pc_size: int = 1024,
scale: float = 0.01,
debug: int = -1):
"""
Class that stores references to important nodes in an FBX file.
Offers utility functions to quickly load animation data.
:param fbx_file: `Path` to the file to load.
:param volume_dims: `tuple` of `float` that represent the dimensions of the capture volume in meters.
:param max_actors: `int` maximum amount of actors to expect in a point cloud.
:param pc_size: `int` amount of points in a point cloud.
:param debug: If higher than -1, will print out debugging statements.
"""
super().__init__(fbx_file=fbx_file, debug=debug)
if pc_size < max_actors * 73:
raise ValueError('Point cloud size must be large enough to contain the maximum amount of actors * 73'
f' markers: {pc_size}/{max_actors * 73}.')
self.debug = debug
# Python ENUM of the C++ time modes.
self.time_modes = globals.get_time_modes()
# Ordered list of marker names. Note: rearrange this in globals.py.
self.child_names = globals.get_marker_names()
# Initiate empty lists to store references to nodes.
self.children = []
self.labeled_world_transforms = None
self.unlabeled_world_transforms = None
# Split the dimensions tuple into its axes for easier access.
self.vol_x = volume_dims[0]
self.vol_y = volume_dims[1]
self.vol_z = volume_dims[2]
self.hvol_x = volume_dims[0] / 2
self.hvol_y = volume_dims[1] / 2
self.hvol_z = volume_dims[2] / 2
self.scale = scale
self.max_actors = max_actors
# Maximum point cloud size = 73 * max_actors + unlabeled markers.
self.pc_size = pc_size
self.output_fbx = utils.append_suffix_to_file(fbx_file, '_INF')
self.valid_frames = []
self.init()
def __init_unlabeled_markers(self) -> None:
"""
Looks for the Unlabeled_Markers parent node under the root and stores references to all unlabeled marker nodes.
"""
# Find the Unlabeled_Markers parent node.
for i in range(self.root.GetChildCount()):
gen1_node = self.root.GetChild(i)
if match_name(gen1_node, 'Unlabeled_Markers'):
self.unlabeled_markers_parent = gen1_node
self.unlabeled_markers = [gen1_node.GetChild(um) for um in range(gen1_node.GetChildCount())]
return
def init_world_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> None:
"""
Calls the init functions for the labeled and unlabeled world transforms.
:param r: Custom frame range to extract.
"""
self.init_labeled_world_transforms(r=r)
self.init_unlabeled_world_transforms(r=r)
def init_labeled_world_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> np.array:
"""
For each actor, for each marker, stores a list for each element in the world transform for each frame
in r. This can later be used to recreate the world transform matrix.
:param r: Custom frame range to use.
:return: `np.array` of shape (n_frames, 15, n_markers).
"""
r = self.convert_r(r)
labeled_data = []
# Iterate through all actors.
for actor_idx in range(self.parent_count):
# Initialize an empty list to store the results for this actor in.
actor_data = []
# Iterate through all markers for this actor.
for marker_idx, (n, m) in enumerate(self.children[actor_idx].items()):
# Get this marker's local translation animation curve.
# This requires the animation layer, so we can't do it within the function itself.
curve = m.LclTranslation.GetCurve(self.anim_layer, 'X', True)
# Get a list of each world transform element for all frames.
marker_data = get_world_transforms(actor_idx + 1, marker_idx + 1, m, r, curve)
# Add the result to actor_data.
actor_data.append(marker_data)
self._print(f'Actor {actor_idx} marker {marker_idx} done', 1)
# Add all this actor_data to the global labeled_data.
labeled_data.append(actor_data)
# Convert the list to a np array. This will have all frames at the last dimension because of this order:
# Shape (n_actors, n_markers, 16, n_frames).
wide_layout = np.array(labeled_data)
# Transpose the array so that the order becomes (n_frames, n_actors, 16, n_markers).
self.labeled_world_transforms = np.transpose(wide_layout, axes=(3, 0, 2, 1))
return self.labeled_world_transforms
def init_unlabeled_world_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> np.array:
"""
For all unlabeled markers, stores a list for each element in the world transform for each frame
in r. This can later be used to recreate the world transform matrix.
:param r: Custom frame range to use.
:return: `np.array` of shape (n_frames, 15, n_unlabeled_markers).
"""
r = self.convert_r(r)
unlabeled_data = []
# Iterate through all unlabeled markers.
for ulm in self.unlabeled_markers:
# Get this marker's local translation animation curve.
# This requires the animation layer, so we can't do it within the function itself.
curve = ulm.LclTranslation.GetCurve(self.anim_layer, 'X', True)
# Get a list of each world transform element for all frames.
marker_data = get_world_transforms(0, 0, ulm, r, curve)
# Add the result to marker_data.
unlabeled_data.append(marker_data)
self._print(f'Unlabeled marker {ulm.GetName()} done', 1)
# Convert the list to a np array. This will have all frames at the last dimension because of this order:
# Shape (n_unlabeled_markers, 16, n_frames).
wide_layout = np.array(unlabeled_data)
# Transpose the array so that the order becomes (n_frames, 16, n_unlabeled_markers).
self.unlabeled_world_transforms = np.transpose(wide_layout, axes=(2, 1, 0))
return self.unlabeled_world_transforms
def init(self) -> None:
"""
Initializes the scene.
"""
self._init_scene()
self._init_anim()
self._init_parents(list(self.child_names[:4]))
self._init_children(self.child_names)
self.__init_unlabeled_markers()
self._print('Init done', 0)
def columns_from_joints(self) -> List[str]:
"""
Generates a list of column names based on the (order of the) marker names.
:return: List of column names, in the form of [node1_tx, node1_ty, node1_tz, node2_tx, node2_ty, node2_tz..].
"""
columns = []
for name in self.child_names:
columns += [f'{name}x', f'{name}y', f'{name}z']
return columns
def remove_clipping_poses(self, arr: np.array) -> np.array:
"""
Checks for each axis if it does not cross the volume limits. Returns an array without clipping poses.
This function uses the volume dimensions in cms, so use it before the data is scaled down.
:param arr: `np.array` to filter.
:return: Filtered `np.array` that only has non-clipping poses.
"""
mask_x1 = (arr[:, 2] < self.hvol_x / self.scale).all(axis=1)
mask_x2 = (arr[:, 2] > -self.hvol_x / self.scale).all(axis=1)
mask_z1 = (arr[:, 4] < self.hvol_z / self.scale).all(axis=1)
mask_z2 = (arr[:, 4] > -self.hvol_z / self.scale).all(axis=1)
mask = mask_x1 & mask_x2 & mask_z1 & mask_z2
return arr[mask]
def extract_training_translations(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
move_to_center: bool = True) -> np.array:
"""
Manipulates the existing labeled world transform array into one that is suitable for training.
It does this through flattening the array to shape (n_frames, n_actors * 73, 15), then removing
all clipping frames and finally transforms the frames to the right location and scale.
:param r: Custom frame range to use if the labeled transforms are not stored yet.
:param move_to_center: If True, the x and y axes is moved to the center of the volume.
:return: Transformed labeled world transforms.
"""
if self.labeled_world_transforms is None:
self.init_labeled_world_transforms(r=r)
flattened = flatten_labeled_transforms(self.labeled_world_transforms)
# Isolate the poses with all keyframes present by checking the last elements.
# Start with the mask.
# Returns shape of (n_frames * n_actors, 16, 73).
mask = flattened[:, -1] == 1
# We only need a filter for the first dimension, so use .all to check if all markers
# have a keyframe. This results in shape (n_frames * n_actors,).
mask = mask.all(axis=1)
# Remove the last element of the second dimension, (was it keyframed or not) because it won't be useful anymore.
flattened = flattened[mask][:, :-1]
del mask
# Remove any frames that cross the limits of the volume.
flattened = self.remove_clipping_poses(flattened)
return transform_translations(flattened, move_to_center, self.scale, (self.vol_x, self.vol_y, self.vol_z))
def extract_inf_translations(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
merged: bool = True) -> Union[np.array, Tuple[np.array, np.array]]:
"""
Manipulates the existing (un)labeled world transform arrays into arrays that are suitable for inference.
It does this through flattening the labeled world transforms to shape (n_frames, n_actors * 73, 14).
If merged is True, merges the unlabeled data with the labeled data.
:param r: Custom frame range to use if the transforms were not extracted yet.
:param merged: `bool` whether to merge both arrays into one or return separate arrays.
:return: If merged, returns one `np.array`, else flattened labeled `np.array` and unlabeled `np.array`.
"""
# If either of the arrays is None, we can initialize them with r.
if self.labeled_world_transforms is None:
# For inference, we don't need keyed frames, so incl_keyed is False.
self.init_labeled_world_transforms(r=r)
if self.unlabeled_world_transforms is None:
# Note: Unlabeled data is already flattened.
self.init_unlabeled_world_transforms(r=r)
# Starting with (n_frames, n_actors, 16, 73).
# Flatten the array, so we get a list of frames.
# Returns shape (n_frames, 16, n_actors, 73).
flat_labeled = self.labeled_world_transforms.transpose(0, 2, 1, 3)
# Stack the elements in the last 2 dimension after each other.
# Returns shape (n_frames, 16, n_actors * 73).
ls = flat_labeled.shape
flat_labeled = flat_labeled.reshape(ls[0], ls[1], -1)
del ls
# Replace non keyed frames with inf and strip off the keyed element, because this is the last time we need it.
flat_labeled = replace_zeros_with_inf(flat_labeled)[:, :-1]
self.unlabeled_world_transforms = replace_zeros_with_inf(self.unlabeled_world_transforms)[:, :-1]
if merged:
return utils.merge_labeled_and_unlabeled_data(labeled=flat_labeled,
unlabeled=self.unlabeled_world_transforms,
pc_size=self.pc_size)
else:
return flat_labeled, self.unlabeled_world_transforms
def get_split_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
mode: str = 'train') -> Tuple[np.array, np.array, np.array, np.array, np.array]:
"""
Splits a timeline dense cloud with shape (self.num_frames, self.pc_size, 5) into 3 different
arrays:
1. A `np.array` with the actor classes as shape (self.num_frames, self.pc_size, 1).
2. A `np.array` with the marker classes as shape (self.num_frames, self.pc_size, 1).
3. A `np.array` with the translation floats as shape (self.num_frames, self.pc_size, 4).
4. A `np.array` with the rotation Euler angles as shape (self.num_frames, self.pc_size, 3).
:return: Return tuple of `np.array` as (actor classes, marker classes, translation vectors).
"""
cloud = self.extract_training_translations(r) if mode == 'train' else self.extract_inf_translations(r)
# Return np arrays as (actor classes, marker classes, translation vectors, rotation vectors, scale vectors).
return cloud[:, :, 0], cloud[:, :, 1], cloud[:, :, 2:5], cloud[:, :, 6:9], cloud[:, :, 10:13]
def convert_class_to_parent(self, c: float = 0):
"""
Returns the actor name based on the class value.
:param c: `float` actor class index.
:return: `str` actor name.
"""
return 'UNLABELED' if int(c) == 0 else self.parent_names[int(c) - 1]
def convert_class_to_child(self, c: float = 0):
"""
Returns the marker name based on the class value.
:param c: `float` marker class index.
:return: `str` marker name.
"""
return 'UNLABELED' if int(c) == 0 else self.child_names[int(c) - 1]
def export_train_data(self, output_file: Path, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) \
-> Union[bytes, pd.DataFrame, np.array]:
"""
Exports train data to an HDF5 file.
:param output_file: `Path` to the file.
:param r: Custom frame range to use.
:return: `np.array` of shape (n_poses, 14, 73) of train data.
"""
if output_file.suffix == '.h5':
array_4d = self.extract_training_translations(r)
with h5py.File(output_file, 'w') as h5f:
h5f.create_dataset('array_data', data=array_4d, compression='gzip', compression_opts=9)
self._print(f'Exported train data to {output_file}', 0)
return array_4d
else:
raise ValueError('Invalid file extension. Must be .h5')
def export_inf_data(self, output_file: Path, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
merged: bool = True) -> Union[np.array, Tuple[np.array, np.array]]:
"""
Exports inference data to an HDF5 file.
:param output_file: `Path` to the file.
:param r: Custom frame range to use.
:param merged: `bool` whether to merge the test data or output an unlabeled dataset and labeled dataset.
:return: `np.array` of the test data.
"""
# Retrieve the clean world transforms.
# If merged is True, this will be one array of shape (n_frames, pc_size, 14).
# If merged is False, this will be two arrays, one of shape (n_frames, 73 * n_actors, 14),
# and one of shape (n_frames, n_unlabeled_markers, 14).
array_4d = self.extract_inf_translations(r, merged=merged)
if output_file.suffix == '.h5':
with h5py.File(output_file, 'w') as h5f:
if merged:
# If merged, this can be one dataset.
h5f.create_dataset('merged_data', data=array_4d, compression='gzip', compression_opts=9)
else:
# If not merged, we split it up because array_4d is a tuple of 2.
h5f.create_dataset('labeled', data=array_4d[0], compression='gzip', compression_opts=9)
h5f.create_dataset('unlabeled', data=array_4d[1], compression='gzip', compression_opts=9)
self._print(f'Exported test data to {output_file}', 0)
return array_4d
def export_fbx(self, output_file: Path = None) -> bool:
"""
Exports the entire scene to the output file. If output_file is None, it uses the automatic output_fbx property.
:param output_file: `Path` path to an FBX file to export the contents to.
:return: `True` if successful, otherwise `False`.
"""
if output_file is None:
output_file = self.output_fbx
# Create an exporter using the manager
exporter = fbx.FbxExporter.Create(self.manager, "")
# Initialize the exporter with the output file path
result = exporter.Initialize(str(output_file))
if not result:
self._print(f"Failed to initialize the exporter for file '{output_file}'.", 0)
return False
# Export the scene
result = exporter.Export(self.scene)
if not result:
self._print(f"Failed to export the scene to file '{output_file}'.", 0)
return False
# Clean up the manager and exporter
exporter.Destroy()
self._print('Export finished', 0)
return True
def remove_unlabeled_markers(self) -> None:
"""
Uses self.remove_node() to delete all unlabeled markers from the scene.
"""
for m in self.unlabeled_markers:
self.remove_node(m)
self.remove_node(self.unlabeled_markers_parent)
def remove_system(self) -> None:
"""
Removes all nodes under and including the System parent.
"""
system_node = self.get_parent_node_by_name('System')
self.remove_node(system_node, recursive=True)
def cleanup(self) -> None:
"""
Removes all unlabeled markers and System nodes.
"""
self.remove_unlabeled_markers()
self.remove_system()
def get_clean_translation_curves(self, marker: fbx.FbxNode) -> List[fbx.FbxAnimCurve]:
"""
Gets and cleans the local translation animation curves for the given marker.
:param marker: `fbx.FbxNode` to get the anim curves off.
:return: List of `fbx.FbxAnimCurve` without keyframes.
"""
curves = []
for axis in ['X', 'Y', 'Z']:
# Last argument is True, so if no anim curve was connected here,
# it'll automatically make a new one and connect it correctly.
curve = marker.LclTranslation.GetCurve(self.anim_layer, axis, True)
# Remove all existing keyframes.
curve.KeyClear()
curves.append(curve)
return curves
def set_default_lcl_rotation(self, node: fbx.FbxNode, lcl_r: List[float]) -> None:
"""
First checks if the local rotation has an animation curve. This gets destroyed if it exists.
Then it sets the default values.
:param node: `fbx.FbxNode` to set the default local rotation for.
:param lcl_r: List of `float` to set the default local rotation to.
"""
for axis in ['X', 'Y', 'Z']:
curve = node.LclRotation.GetCurve(self.anim_layer, axis, False)
if curve:
curve.Destroy()
node.LclRotation.Set(fbx.FbxDouble3(*lcl_r))
def set_default_lcl_scaling(self, node: fbx.FbxNode, lcl_s: List[float]) -> None:
"""
First checks if the local scaling has an animation curve. This gets destroyed if it exists.
Then it sets the default values.
:param node: `fbx.FbxNode` to set the default local scaling for.
:param lcl_s: List of `float` to set the default local scaling to.
"""
for axis in ['X', 'Y', 'Z']:
curve = node.LclScaling.GetCurve(self.anim_layer, axis, False)
if curve:
curve.Destroy()
node.LclScaling.Set(fbx.FbxDouble3(*lcl_s))
def set_default_lcl_transforms(self, marker: fbx.FbxNode, marker_keys: dict) -> None:
"""
Finds the first frame in the dict, calculates that frame's local transform,
and then sets the default values for the local rotation and scaling.
:param marker: `fbx.FbxNode` marker to set the default values for.
:param marker_keys: `dict` in the form of {'frame': [tx, ty, tz, rx, ry, rz...]}.
"""
# Find the first frame in the dict.
frame = list(marker_keys.keys())[0]
# Find the FbxAMatrix stored under that frame.
world_transform = marker_keys[frame]
# Calculate the local rotation and scaling, ignore the translation.
_, lcl_r, lcl_s = world_to_local_transform(marker, world_transform, frame)
# Set the default values for the rotation and scaling, as they don't need keyframes.
# Note that these functions will destroy any associated anim curves.
self.set_default_lcl_rotation(marker, lcl_r)
self.set_default_lcl_scaling(marker, lcl_s)
def replace_keyframes_per_marker(self, marker: fbx.FbxNode, marker_keys: dict) -> None:
"""
For the given marker, creates new keyframes on its local translation animation curves,
and sets the default local rotation values.
:param marker: `fbx.FbxNode` to set the default values on.
:param marker_keys: `dict` of keys that contain all info needed to create world transform matrices.
"""
# Initialize empty variables for the local rotation and scaling.
# These will be filled at the first keyframe
self.set_default_lcl_transforms(marker, marker_keys)
for axis, curve in enumerate(self.get_clean_translation_curves(marker)):
curve.KeyModifyBegin()
# The dict has frames mapped to world matrices.
# The world_transform here is that full matrix, so we only need to convert this to local space.
for frame, world_transform in marker_keys.items():
# Convert world to local transform at the given frame.
lcl_t, _, _ = world_to_local_transform(marker, world_transform, frame)
# Only for translations set keyframes.
create_keyframe(curve, frame, lcl_t[axis])
curve.KeyModifyEnd()
def replace_keyframes_per_actor(self, actor: int, actor_keys: dict) -> None:
"""
Uses self.replace_keyframes_per_marker() to keyframe all markers of given actor.
:param actor: `int` actor index to apply to. Index starts at 0.
:param actor_keys: `dict` with all marker keys for this actor.
"""
for marker_class, (marker_name, marker) in enumerate(self.children[actor].items(), start=1):
marker_keys = actor_keys.get(marker_class)
if marker_keys:
self._print(f'Replacing keys for {marker_name}', 1)
self.replace_keyframes_per_marker(marker, marker_keys)
def replace_keyframes_for_all_actors(self, key_dict: dict) -> None:
"""
For all actors, uses self.replace_keyframes_per_actor() to set keyframes on each actor's marker nodes.
:param key_dict: `dict` with all actor keyframes.
"""
for actor_idx in range(self.parent_count):
actor_dict = key_dict.get(actor_idx + 1)
if actor_dict:
self._print(f'Replacing keys for actor {actor_idx}', 1)
self.replace_keyframes_per_actor(actor_idx, actor_dict)
# if __name__ == '__main__':
# np.printoptions(precision=2, suppress=True)
# # container = FBXContainer(Path(r'G:\Firestorm\mocap-ai\data\fbx\dowg\TAKE_01+1_ALL_001.fbx'))
# container = FBXContainer(Path('G:/Firestorm/mocap-ai/data/fbx/mes-1/DressingRoom_1_001.fbx'), pc_size=600)