Changed the way transforms are extracted and added functions to export them to HDF5 (.h5) files.
Browse files- app.py +2 -2
- fbx_handler.md +16 -7
- fbx_handler.py +396 -145
- labeler/data_setup.py +161 -0
- preprocess_files.py +71 -0
- requirements.txt +3 -1
- utils.py +104 -0
app.py
CHANGED
@@ -10,9 +10,9 @@ import streamlit as st
|
|
10 |
import fbx_handler
|
11 |
|
12 |
|
13 |
-
def process_file(file: Path) ->
|
14 |
fbx_content = fbx_handler.FBXContainer(file)
|
15 |
-
return
|
16 |
|
17 |
|
18 |
# Initialize session state variables if they don't exist
|
|
|
10 |
import fbx_handler
|
11 |
|
12 |
|
13 |
+
def process_file(file: Path) -> int:
|
14 |
fbx_content = fbx_handler.FBXContainer(file)
|
15 |
+
return 1
|
16 |
|
17 |
|
18 |
# Initialize session state variables if they don't exist
|
fbx_handler.md
CHANGED
@@ -8,26 +8,35 @@ input_file = Path('/path/to/file.fbx')
|
|
8 |
container = FBXContainer(input_file)
|
9 |
```
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
## Training workflow:
|
12 |
```python
|
13 |
-
#
|
14 |
-
|
|
|
|
|
15 |
# Convert to dataset...
|
16 |
...
|
17 |
```
|
18 |
|
19 |
## Testing workflow:
|
20 |
```python
|
21 |
-
#
|
22 |
-
|
23 |
-
#
|
24 |
-
actors_test, markers_test, t_test,
|
25 |
# Predict the new actors and classes...
|
26 |
actors_pred, markers_pred = Labeler(container.transform_translations(t_test))
|
27 |
# Merge the new labels with their original translations.
|
28 |
merged = merge_tdc(actors_pred, markers_pred, t_test, r_test, s_test)
|
29 |
# Convert the full cloud into a dict structured for easy keyframes.
|
30 |
-
new_dict =
|
31 |
# Replace the old translation keyframes with the new values.
|
32 |
container.replace_keyframes_for_all_actors(new_dict)
|
33 |
# Export file.
|
|
|
8 |
container = FBXContainer(input_file)
|
9 |
```
|
10 |
|
11 |
+
## Preprocess data:
|
12 |
+
```python
|
13 |
+
container.init_world_transforms(r=...)
|
14 |
+
train_raw_data = container.extract_training_translations()
|
15 |
+
test_raw_data = container.extract_inf_translations()
|
16 |
+
```
|
17 |
+
|
18 |
## Training workflow:
|
19 |
```python
|
20 |
+
# Load file.
|
21 |
+
container = FBXContainer(input_file)
|
22 |
+
# Get np.array with all valid translation numbers.
|
23 |
+
actors_train, markers_train, t_test, _, _ = container.get_split_transforms(mode='train')
|
24 |
# Convert to dataset...
|
25 |
...
|
26 |
```
|
27 |
|
28 |
## Testing workflow:
|
29 |
```python
|
30 |
+
# Load file.
|
31 |
+
container = FBXContainer(input_file)
|
32 |
+
# Get splitted original data (no transforms applied).
|
33 |
+
actors_test, markers_test, t_test, r_test_, s_test = container.get_split_transforms(mode='test')
|
34 |
# Predict the new actors and classes...
|
35 |
actors_pred, markers_pred = Labeler(container.transform_translations(t_test))
|
36 |
# Merge the new labels with their original translations.
|
37 |
merged = merge_tdc(actors_pred, markers_pred, t_test, r_test, s_test)
|
38 |
# Convert the full cloud into a dict structured for easy keyframes.
|
39 |
+
new_dict = array_to_dict(merged)
|
40 |
# Replace the old translation keyframes with the new values.
|
41 |
container.replace_keyframes_for_all_actors(new_dict)
|
42 |
# Export file.
|
fbx_handler.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
# Import core libs.
|
2 |
-
from pprint import pprint
|
3 |
-
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
from pathlib import Path
|
7 |
from typing import List, Union, Tuple
|
|
|
8 |
|
9 |
# Import util libs.
|
10 |
import contextlib
|
@@ -13,16 +11,18 @@ import itertools
|
|
13 |
|
14 |
# Import custom data.
|
15 |
import globals
|
|
|
16 |
|
17 |
|
18 |
-
def center_axis(a: List[float]) -> np.array:
|
19 |
"""
|
20 |
Centers a list of floats.
|
21 |
:param a: List of floats to center.
|
22 |
:return: The centered list as a `np.array`.
|
23 |
"""
|
24 |
# Turn list into np array for optimized math.
|
25 |
-
a
|
|
|
26 |
|
27 |
# Find the centroid by subtracting the lowest value from the highest value.
|
28 |
_min = np.min(a)
|
@@ -58,17 +58,6 @@ def make_ghost_markers(missing: int) -> np.array:
|
|
58 |
])
|
59 |
|
60 |
|
61 |
-
def append_suffix(file_path: Path, suffix: str = '_INF'):
|
62 |
-
"""
|
63 |
-
Adds a suffix to the given file path.
|
64 |
-
:param file_path: `Path` object to the original file.
|
65 |
-
:param suffix: `str` suffix to add to the end of the original file name.
|
66 |
-
:return: Updated `Path`.
|
67 |
-
"""
|
68 |
-
new_file_name = file_path.stem + suffix + file_path.suffix
|
69 |
-
return file_path.with_name(new_file_name)
|
70 |
-
|
71 |
-
|
72 |
def append_zero(arr: np.ndarray) -> np.ndarray:
|
73 |
zeros = np.zeros((arr.shape[0], arr.shape[1], 1), dtype=float)
|
74 |
return np.concatenate((arr, zeros), axis=-1)
|
@@ -85,8 +74,8 @@ def merge_tdc(actor_classes: np.array,
|
|
85 |
rotation_vectors: np.array,
|
86 |
scale_vectors: np.array,
|
87 |
ordered: bool = True) -> np.array:
|
88 |
-
# Actor and marker classes enter as shape (x, 1000), so use np.expand_dims to create
|
89 |
-
# Return the concatenated array of shape (x, 1000,
|
90 |
# splitting it into sub arrays.
|
91 |
|
92 |
tdc = np.concatenate((np.expand_dims(actor_classes, -1),
|
@@ -111,7 +100,7 @@ def shuffle_tdc(tdc: np.array) -> np.array:
|
|
111 |
if tdc.ndim != 3:
|
112 |
raise ValueError(f'Array does not have 3 dimensions: {tdc.ndim}/3.')
|
113 |
|
114 |
-
# Shuffle the
|
115 |
for i in range(tdc.shape[0]):
|
116 |
np.random.shuffle(tdc[i])
|
117 |
return tdc
|
@@ -142,10 +131,6 @@ def sort_cloud(cloud: np.array) -> np.array:
|
|
142 |
return sorted_tdc
|
143 |
|
144 |
|
145 |
-
def isolate_labeled_markers_from_tdc(tdc: np.array) -> np.array:
|
146 |
-
return np.stack([tdc[i, tdc[i, :, 0] > 0.] for i in range(tdc.shape[0])], axis=0)
|
147 |
-
|
148 |
-
|
149 |
def create_keyframe(anim_curve: fbx.FbxAnimCurve, frame: int, value: float):
|
150 |
# Create an FbxTime object with the given frame number
|
151 |
t = fbx.FbxTime()
|
@@ -173,7 +158,7 @@ def match_name(node: fbx.FbxNode, name: str, ignore_namespace: bool = True) -> b
|
|
173 |
return node_name == name
|
174 |
|
175 |
|
176 |
-
def
|
177 |
"""
|
178 |
Converts an `np.array` timeline sparse cloud to a dictionary structured for keyframed animation.
|
179 |
:param tsc: `np.array` timeline sparse cloud to process.
|
@@ -248,16 +233,16 @@ def world_to_local_transform(node: fbx.FbxNode, world_transform: fbx.FbxAMatrix,
|
|
248 |
return [lcl.GetT()[t] for t in range(3)], [lcl.GetR()[r] for r in range(3)], [lcl.GetS()[s] for s in range(3)]
|
249 |
|
250 |
|
251 |
-
def get_world_transform(m: fbx.FbxNode,
|
252 |
"""
|
253 |
Evaluates the world translation of the given node at the given time,
|
254 |
scales it down by scale and turns it into a vector list.
|
255 |
:param m: `fbx.FbxNode` marker to evaluate the world translation of.
|
256 |
-
:param
|
257 |
:param axes: `str` that contains types of info to include. Options are a combination of t, r, and s.
|
258 |
:return: Vector in the form: [tx, ty, etc..].
|
259 |
"""
|
260 |
-
matrix = m.EvaluateGlobalTransform(
|
261 |
|
262 |
# If axes is only the translation, we return a vector of (tx, ty, tz) only (useful for the training).
|
263 |
if axes == 't':
|
@@ -301,12 +286,70 @@ def split_tdc_into_actors(tdc: np.array) -> List[np.array]:
|
|
301 |
return [isolate_actor_from_tdc(tdc, i) for i in range(1, actor_count + 1)]
|
302 |
|
303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
class FBXContainer:
|
305 |
def __init__(self, fbx_file: Path,
|
306 |
volume_dims: Tuple[float] = (10., 4., 10.),
|
307 |
-
max_actors: int =
|
308 |
-
pc_size: int =
|
309 |
-
scale: float = 0.01
|
|
|
|
|
|
|
|
|
310 |
"""
|
311 |
Class that stores references to important nodes in an FBX file.
|
312 |
Offers utility functions to quickly load animation data.
|
@@ -314,11 +357,16 @@ class FBXContainer:
|
|
314 |
:param volume_dims: `tuple` of `float` that represent the dimensions of the capture volume in meters.
|
315 |
:param max_actors: `int` maximum amount of actors to expect in a point cloud.
|
316 |
:param pc_size: `int` amount of points in a point cloud.
|
|
|
|
|
|
|
|
|
317 |
"""
|
318 |
if pc_size < max_actors * 73:
|
319 |
raise ValueError('Point cloud size must be large enough to contain the maximum amount of actors * 73'
|
320 |
f' markers: {pc_size}/{max_actors * 73}.')
|
321 |
|
|
|
322 |
# Python ENUM of the C++ time modes.
|
323 |
self.time_modes = globals.get_time_modes()
|
324 |
# Ordered list of marker names. Note: rearrange this in globals.py.
|
@@ -330,6 +378,9 @@ class FBXContainer:
|
|
330 |
# Store names of the actors (all parent nodes that have the first 4 markers as children).
|
331 |
self.actor_names = []
|
332 |
|
|
|
|
|
|
|
333 |
# Split the dimensions tuple into its axes for easier access.
|
334 |
self.vol_x = volume_dims[0]
|
335 |
self.vol_y = volume_dims[1]
|
@@ -342,16 +393,16 @@ class FBXContainer:
|
|
342 |
self.pc_size = pc_size
|
343 |
|
344 |
self.input_fbx = fbx_file
|
345 |
-
self.output_fbx =
|
|
|
346 |
self.valid_frames = []
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
self.__init_unlabeled_markers()
|
353 |
|
354 |
-
def __init_scene(self):
|
355 |
"""
|
356 |
Stores scene, root, and time_mode properties.
|
357 |
Destroys the importer to remove the reference to the loaded file.
|
@@ -365,6 +416,8 @@ class FBXContainer:
|
|
365 |
self.scene = fbx.FbxScene.Create(self.manager, '')
|
366 |
importer.Import(self.scene)
|
367 |
self.root = self.scene.GetRootNode()
|
|
|
|
|
368 |
self.time_mode = self.scene.GetGlobalSettings().GetTimeMode()
|
369 |
fbx.FbxTime.SetGlobalTimeMode(self.time_mode)
|
370 |
|
@@ -372,27 +425,38 @@ class FBXContainer:
|
|
372 |
# This will allow us to delete the uploaded file.
|
373 |
importer.Destroy()
|
374 |
|
375 |
-
def __init_anim(self):
|
376 |
"""
|
377 |
Stores the anim_stack, num_frames, start_frame, end_frame properties.
|
378 |
"""
|
379 |
# Get the animation stack and layer.
|
380 |
anim_stack = self.scene.GetCurrentAnimationStack()
|
381 |
self.anim_layer = anim_stack.GetSrcObject(fbx.FbxCriteria.ObjectType(fbx.FbxAnimLayer.ClassId), 0)
|
|
|
|
|
382 |
|
383 |
# Find the total number of frames to expect from the local time span.
|
384 |
local_time_span = anim_stack.GetLocalTimeSpan()
|
385 |
self.num_frames = int(local_time_span.GetDuration().GetFrameCount())
|
|
|
|
|
386 |
self.start_frame = local_time_span.GetStart().GetFrameCount()
|
387 |
self.end_frame = local_time_span.GetStop().GetFrameCount()
|
388 |
|
389 |
-
def __init_actors(self):
|
390 |
"""
|
391 |
Goes through all root children (generation 1).
|
392 |
If a child has 4 markers as children, it is considered an actor (Shogun subject) and appended to actors
|
393 |
and actor_names list properties.
|
394 |
Also initializes an empty valid_frames list for each found actor.
|
395 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
# Find all parent nodes (/System, /Unlabeled_Markers, /Actor1, etc).
|
397 |
gen1_nodes = [self.root.GetChild(i) for i in range(self.root.GetChildCount())]
|
398 |
for gen1_node in gen1_nodes:
|
@@ -400,14 +464,19 @@ class FBXContainer:
|
|
400 |
range(gen1_node.GetChildCount())] # Actor nodes (/Mimi/Hips, /Mimi/ARIEL, etc)
|
401 |
|
402 |
# If the first 3 marker names are children of this parent, it must be an actor.
|
403 |
-
if all(name in [node.GetName().split(':')[-1] for node in gen2_nodes] for name in
|
404 |
self.actor_names.append(gen1_node.GetName())
|
405 |
self.actors.append(gen1_node)
|
406 |
|
|
|
|
|
|
|
|
|
|
|
407 |
self.actor_count = len(self.actors)
|
408 |
self.valid_frames = [[] for _ in range(self.actor_count)]
|
409 |
|
410 |
-
def __init_markers(self):
|
411 |
"""
|
412 |
Goes through all actor nodes and stores references to its marker nodes.
|
413 |
"""
|
@@ -421,11 +490,12 @@ class FBXContainer:
|
|
421 |
if match_name(child, marker_name, ignore_namespace=True):
|
422 |
actor_markers[marker_name] = child
|
423 |
|
424 |
-
|
|
|
425 |
|
426 |
self.markers.append(actor_markers)
|
427 |
|
428 |
-
def __init_unlabeled_markers(self):
|
429 |
"""
|
430 |
Looks for the Unlabeled_Markers parent node under the root and stores references to all unlabeled marker nodes.
|
431 |
"""
|
@@ -437,13 +507,69 @@ class FBXContainer:
|
|
437 |
self.unlabeled_markers = [gen1_node.GetChild(um) for um in range(gen1_node.GetChildCount())]
|
438 |
return
|
439 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
def _check_actor(self, actor: int = 0):
|
441 |
"""
|
442 |
Safety check to see if the actor `int` is a valid number (to avoid out of range errors).
|
443 |
:param actor: `int` actor index, which should be between 0-max_actors.
|
444 |
"""
|
445 |
-
|
446 |
-
|
447 |
|
448 |
def _set_valid_frames_for_actor(self, actor: int = 0):
|
449 |
"""
|
@@ -459,16 +585,18 @@ class FBXContainer:
|
|
459 |
self._check_actor(actor)
|
460 |
|
461 |
frames = self.get_frame_range()
|
462 |
-
for
|
463 |
# Get the animation curve for local translation x.
|
464 |
t_curve = marker.LclTranslation.GetCurve(self.anim_layer, 'X')
|
465 |
# If an actor was recorded but seems to have no animation curves, we set their valid frames to nothing.
|
466 |
# Then we return, because there is no point in further checking non-existent keyframes.
|
467 |
if t_curve is None:
|
468 |
self.valid_frames[actor] = []
|
|
|
469 |
return
|
470 |
|
471 |
# Get all keyframes on the animation curve and store their frame numbers.
|
|
|
472 |
keys = [t_curve.KeyGet(i).GetTime().GetFrameCount() for i in range(t_curve.KeyGetCount())]
|
473 |
# Check for each frame in frames if it is present in the list of keyframed frames.
|
474 |
for frame in frames:
|
@@ -478,6 +606,7 @@ class FBXContainer:
|
|
478 |
with contextlib.suppress(ValueError):
|
479 |
frames.remove(frame)
|
480 |
|
|
|
481 |
self.valid_frames[actor] = frames
|
482 |
|
483 |
# Store all frame lists that have at least 1 frame.
|
@@ -486,13 +615,6 @@ class FBXContainer:
|
|
486 |
self.common_frames = [num for num in self.get_frame_range()
|
487 |
if all(num in other_list for other_list in other_lists)]
|
488 |
|
489 |
-
def set_valid_frames(self):
|
490 |
-
"""
|
491 |
-
For each actor, calls _set_valid_frames_for_actor().
|
492 |
-
"""
|
493 |
-
for i in range(self.actor_count):
|
494 |
-
self._set_valid_frames_for_actor(i)
|
495 |
-
|
496 |
def _check_valid_frames(self, actor: int = 0):
|
497 |
"""
|
498 |
Safety check to see if the given actor has any valid frames stored.
|
@@ -502,9 +624,10 @@ class FBXContainer:
|
|
502 |
self._check_actor(actor)
|
503 |
|
504 |
if not len(self.valid_frames[actor]):
|
|
|
505 |
self._set_valid_frames_for_actor(actor)
|
506 |
|
507 |
-
def
|
508 |
"""
|
509 |
Evaluates all marker nodes for the given actor and modifies the resulting point cloud,
|
510 |
so it is centered and scaled properly for training.
|
@@ -538,7 +661,20 @@ class FBXContainer:
|
|
538 |
z /= self.vol_z
|
539 |
y = np.array(y) / self.vol_y
|
540 |
|
541 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
# Append all values to a new array, one axis at a time.
|
544 |
# This way it will match the column names order.
|
@@ -549,16 +685,6 @@ class FBXContainer:
|
|
549 |
pose += [z[i]]
|
550 |
return pose
|
551 |
|
552 |
-
def extract_scaled_translation(self, m: fbx.FbxNode, time: fbx.FbxTime) -> List[float]:
|
553 |
-
"""
|
554 |
-
Evaluates a node's world translation at the given time and scales the vector down by a factor of self.scale.
|
555 |
-
:param m: `fbx.FbxNode` node that needs to be evaluated.
|
556 |
-
:param time: `fbx.FbxTime` at which frame/time the node needs to be evaluated.
|
557 |
-
:return: Translation vector as a list of floats.
|
558 |
-
"""
|
559 |
-
t = m.EvaluateGlobalTransform(time).GetT()
|
560 |
-
return [t[i] * self.scale for i in range(3)]
|
561 |
-
|
562 |
def get_frame_range(self) -> List[int]:
|
563 |
"""
|
564 |
Replacement and improvement for:
|
@@ -568,6 +694,33 @@ class FBXContainer:
|
|
568 |
"""
|
569 |
return list(range(self.start_frame, self.end_frame))
|
570 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
def columns_from_joints(self) -> List[str]:
|
572 |
"""
|
573 |
Generates a list of column names based on the (order of the) marker names.
|
@@ -652,40 +805,97 @@ class FBXContainer:
|
|
652 |
self._check_valid_frames(actor)
|
653 |
return self.valid_frames[actor]
|
654 |
|
655 |
-
def extract_valid_translations_per_actor(self, actor: int = 0
|
656 |
"""
|
657 |
Assembles the poses for the valid frames for the given actor as a 2D list where each row is a pose.
|
658 |
:param actor: `int` actor index.
|
|
|
659 |
:return: List of poses, where each pose is a list of `float` translations.
|
660 |
"""
|
661 |
# Ensure the actor index is within range.
|
662 |
self._check_actor(actor)
|
|
|
663 |
|
664 |
-
|
665 |
-
|
666 |
-
# Note that these frames can be different per actor.
|
667 |
-
for frame in self.valid_frames[actor]:
|
668 |
-
# Get the centered point cloud as a 1D list.
|
669 |
-
pose_at_frame = self.get_transformed_pc(actor, frame)
|
670 |
-
poses.append(pose_at_frame)
|
671 |
|
672 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
|
674 |
-
def extract_all_valid_translations(self) -> pd.DataFrame:
|
675 |
"""
|
676 |
Convenience method that calls self.extract_valid_translations_per_actor() for all actors
|
677 |
and returns a `DataFrame` containing all poses after each other.
|
678 |
-
:
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
all_poses = []
|
684 |
-
# For each actor, add their valid poses to all_poses.
|
685 |
-
for i in range(self.actor_count):
|
686 |
-
|
687 |
-
|
688 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
689 |
|
690 |
def transform_translations(self, w: np.array) -> np.array:
|
691 |
"""
|
@@ -697,7 +907,7 @@ class FBXContainer:
|
|
697 |
raise ValueError(f'Array does not have 3 dimensions: {w.ndim}/3.')
|
698 |
|
699 |
# If the last dimension has 3 elements, it is a translation vector of shape (tx, ty, tz).
|
700 |
-
# If it has 14 elements, it is a full marker row of shape (actor, marker, tx, ty, tz, rx, ry, rz, etc).
|
701 |
start = 0 if w.shape[-1] == 3 else 2
|
702 |
|
703 |
# First multiply by self.scale, which turns meters to centimeters.
|
@@ -761,6 +971,21 @@ class FBXContainer:
|
|
761 |
# so return the cloud as a np array that cuts off any excessive markers.
|
762 |
return np.array(cloud)[:self.pc_size]
|
763 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
764 |
def get_tsc(self) -> np.array:
|
765 |
"""
|
766 |
Convenience method that calls self.get_sparse_cloud() for all frames in the frame range
|
@@ -769,7 +994,7 @@ class FBXContainer:
|
|
769 |
"""
|
770 |
return np.array([self.get_sc(f) for f in self.get_frame_range()])
|
771 |
|
772 |
-
def get_tdc(self, r: Union[int, Tuple[int, int]] = None) -> np.array:
|
773 |
"""
|
774 |
For each frame in the frame range, collects the point cloud that is present in the file.
|
775 |
Then it creates a ghost cloud of random markers that are treated as unlabeled markers,
|
@@ -781,32 +1006,27 @@ class FBXContainer:
|
|
781 |
with a shape of (self.num_frames, self.pc_size, 5).
|
782 |
"""
|
783 |
|
784 |
-
|
785 |
|
786 |
-
#
|
787 |
-
if isinstance(r, int):
|
788 |
-
r = list(range(r))
|
789 |
-
# If r is two ints, use that as specific frame range.
|
790 |
-
elif isinstance(r, tuple) and len(r) >= 2:
|
791 |
-
r = list(range(r[0], r[1]))
|
792 |
-
# If r is empty, use the animation frame range.
|
793 |
-
else:
|
794 |
-
r = self.get_frame_range()
|
795 |
|
796 |
-
for
|
797 |
-
cloud = self.get_sc(frame)
|
798 |
-
missing = self.pc_size - cloud.shape[0]
|
799 |
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
|
807 |
-
|
|
|
|
|
808 |
|
809 |
-
|
|
|
|
|
|
|
810 |
|
811 |
def split_tdc(self, cloud: np.array = None) \
|
812 |
-> Tuple[np.array, np.array, np.array, np.array, np.array]:
|
@@ -822,13 +1042,28 @@ class FBXContainer:
|
|
822 |
:return: Return tuple of `np.array` as (actor classes, marker classes, translation vectors).
|
823 |
"""
|
824 |
if cloud is None:
|
825 |
-
cloud = self.
|
|
|
|
|
|
|
|
|
|
|
826 |
|
827 |
-
|
828 |
-
|
829 |
-
if cloud.shape[2] != 14:
|
830 |
-
raise ValueError(f"Dense cloud is missing columns: {cloud.shape[2]}/14.")
|
831 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
832 |
# Return np arrays as (actor classes, marker classes, translation vectors, rotation vectors, scale vectors).
|
833 |
return cloud[:, :, 0], cloud[:, :, 1], cloud[:, :, 2:5], cloud[:, :, 6:9], cloud[:, :, 10:13]
|
834 |
|
@@ -848,21 +1083,50 @@ class FBXContainer:
|
|
848 |
"""
|
849 |
return 'UNLABELED' if int(c) == 0 else self.marker_names[int(c) - 1]
|
850 |
|
851 |
-
def
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
if t == 'string':
|
856 |
return df.to_csv(index=False).encode('utf-8')
|
857 |
|
858 |
-
|
859 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
860 |
|
861 |
-
if output_file.suffix
|
862 |
-
|
|
|
|
|
|
|
863 |
|
864 |
-
|
865 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
866 |
|
867 |
def export_fbx(self, output_file: Path = None) -> bool:
|
868 |
"""
|
@@ -879,18 +1143,20 @@ class FBXContainer:
|
|
879 |
# Initialize the exporter with the output file path
|
880 |
result = exporter.Initialize(str(output_file))
|
881 |
if not result:
|
882 |
-
|
883 |
return False
|
884 |
|
885 |
# Export the scene
|
886 |
result = exporter.Export(self.scene)
|
887 |
if not result:
|
888 |
-
|
889 |
return False
|
890 |
|
891 |
# Clean up the manager and exporter
|
892 |
exporter.Destroy()
|
893 |
|
|
|
|
|
894 |
return True
|
895 |
|
896 |
def remove_node(self, node: fbx.FbxNode, recursive: bool = False) -> bool:
|
@@ -1024,6 +1290,7 @@ class FBXContainer:
|
|
1024 |
for marker_class, (marker_name, marker) in enumerate(self.markers[actor].items(), start=1):
|
1025 |
marker_keys = actor_keys.get(marker_class)
|
1026 |
if marker_keys:
|
|
|
1027 |
self.replace_keyframes_per_marker(marker, marker_keys)
|
1028 |
|
1029 |
def replace_keyframes_for_all_actors(self, key_dict: dict) -> None:
|
@@ -1032,23 +1299,7 @@ class FBXContainer:
|
|
1032 |
:param key_dict: `dict` with all actor keyframes.
|
1033 |
"""
|
1034 |
for actor_idx in range(self.actor_count):
|
1035 |
-
actor_dict = key_dict.get(actor_idx+1)
|
1036 |
if actor_dict:
|
|
|
1037 |
self.replace_keyframes_per_actor(actor_idx, actor_dict)
|
1038 |
-
|
1039 |
-
|
1040 |
-
# d = FBXContainer(Path('G:/Firestorm/mocap-ai/data/fbx/dowg/TAKE_01+1_ALL_001.fbx'))
|
1041 |
-
# og_cloud = d.get_tdc()
|
1042 |
-
# # print(og_cloud[0, -10:, 2:5])
|
1043 |
-
# di = tsc_to_dict(og_cloud)
|
1044 |
-
# d.replace_keyframes_for_all_actors(di)
|
1045 |
-
# # new_cloud = d.get_tdc(r=100)
|
1046 |
-
# # print(new_cloud[0, -10:, 2:5])
|
1047 |
-
# # actors_train, markers_train, t_train, r_train, s_train = d.split_tdc(cloud)
|
1048 |
-
# # # t_train_transformed = d.transform_translations(t_train)
|
1049 |
-
# # # splits = d.split_tdc(apply_transform=False)
|
1050 |
-
# # merged = merge_tdc(actors_train, markers_train, t_train, r_train, s_train)
|
1051 |
-
# # pc_dict = tsc_to_dict(merged, d.start_frame)
|
1052 |
-
# # d.replace_keyframes_for_all_actors(pc_dict)
|
1053 |
-
# # # d.cleanup()
|
1054 |
-
# d.export_fbx(Path('G:/Firestorm/mocap-ai/data/fbx/export/TAKE_01+1_ALL_001.fbx'))
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
from pathlib import Path
|
4 |
from typing import List, Union, Tuple
|
5 |
+
import h5py
|
6 |
|
7 |
# Import util libs.
|
8 |
import contextlib
|
|
|
11 |
|
12 |
# Import custom data.
|
13 |
import globals
|
14 |
+
import utils
|
15 |
|
16 |
|
17 |
+
def center_axis(a: Union[List[float], np.array]) -> np.array:
|
18 |
"""
|
19 |
Centers a list of floats.
|
20 |
:param a: List of floats to center.
|
21 |
:return: The centered list as a `np.array`.
|
22 |
"""
|
23 |
# Turn list into np array for optimized math.
|
24 |
+
if not isinstance(a, np.ndarray):
|
25 |
+
a = np.array(a)
|
26 |
|
27 |
# Find the centroid by subtracting the lowest value from the highest value.
|
28 |
_min = np.min(a)
|
|
|
58 |
])
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def append_zero(arr: np.ndarray) -> np.ndarray:
|
62 |
zeros = np.zeros((arr.shape[0], arr.shape[1], 1), dtype=float)
|
63 |
return np.concatenate((arr, zeros), axis=-1)
|
|
|
74 |
rotation_vectors: np.array,
|
75 |
scale_vectors: np.array,
|
76 |
ordered: bool = True) -> np.array:
|
77 |
+
# Actor and marker classes enter as shape (x, 1000), so use np.expand_dims to create a new dimension at the end.
|
78 |
+
# Return the concatenated array of shape (x, 1000, 14), which matches the original timeline dense cloud before
|
79 |
# splitting it into sub arrays.
|
80 |
|
81 |
tdc = np.concatenate((np.expand_dims(actor_classes, -1),
|
|
|
100 |
if tdc.ndim != 3:
|
101 |
raise ValueError(f'Array does not have 3 dimensions: {tdc.ndim}/3.')
|
102 |
|
103 |
+
# Shuffle the frames.
|
104 |
for i in range(tdc.shape[0]):
|
105 |
np.random.shuffle(tdc[i])
|
106 |
return tdc
|
|
|
131 |
return sorted_tdc
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
134 |
def create_keyframe(anim_curve: fbx.FbxAnimCurve, frame: int, value: float):
|
135 |
# Create an FbxTime object with the given frame number
|
136 |
t = fbx.FbxTime()
|
|
|
158 |
return node_name == name
|
159 |
|
160 |
|
161 |
+
def array_to_dict(tsc: np.array, start_frame: int = 0) -> dict:
|
162 |
"""
|
163 |
Converts an `np.array` timeline sparse cloud to a dictionary structured for keyframed animation.
|
164 |
:param tsc: `np.array` timeline sparse cloud to process.
|
|
|
233 |
return [lcl.GetT()[t] for t in range(3)], [lcl.GetR()[r] for r in range(3)], [lcl.GetS()[s] for s in range(3)]
|
234 |
|
235 |
|
236 |
+
def get_world_transform(m: fbx.FbxNode, t: fbx.FbxTime, axes: str = 'trs') -> np.array:
|
237 |
"""
|
238 |
Evaluates the world translation of the given node at the given time,
|
239 |
scales it down by scale and turns it into a vector list.
|
240 |
:param m: `fbx.FbxNode` marker to evaluate the world translation of.
|
241 |
+
:param t: `fbx.FbxTime` time to evaluate at.
|
242 |
:param axes: `str` that contains types of info to include. Options are a combination of t, r, and s.
|
243 |
:return: Vector in the form: [tx, ty, etc..].
|
244 |
"""
|
245 |
+
matrix = m.EvaluateGlobalTransform(t)
|
246 |
|
247 |
# If axes is only the translation, we return a vector of (tx, ty, tz) only (useful for the training).
|
248 |
if axes == 't':
|
|
|
286 |
return [isolate_actor_from_tdc(tdc, i) for i in range(1, actor_count + 1)]
|
287 |
|
288 |
|
289 |
+
def get_keyed_frames_from_curve(curve: fbx.FbxAnimCurve, length: int = -1) -> List[fbx.FbxAnimCurveKey]:
|
290 |
+
frames = [curve.KeyGet(i).GetTime().GetFrameCount() for i in range(curve.KeyGetCount())]
|
291 |
+
dif = length - len(frames)
|
292 |
+
if dif > 0 and length != -1:
|
293 |
+
frames += [0.] * dif
|
294 |
+
return frames
|
295 |
+
|
296 |
+
|
297 |
+
def get_world_transforms(actor_idx: int, marker_idx: int, m: fbx.FbxNode, r: List[int], c, incl_keyed: int = 1) \
|
298 |
+
-> List[List[float]]:
|
299 |
+
zeros = [0.0 for _ in range(len(r))]
|
300 |
+
ones = [1.0 for _ in range(len(r))]
|
301 |
+
|
302 |
+
tx, ty, tz, rx, ry, rz, sx, sy, sz = [], [], [], [], [], [], [], [], []
|
303 |
+
actors = [actor_idx for _ in range(len(r))]
|
304 |
+
markers = [marker_idx for _ in range(len(r))]
|
305 |
+
t = fbx.FbxTime()
|
306 |
+
|
307 |
+
for f in r:
|
308 |
+
t.SetFrame(f)
|
309 |
+
wt = m.EvaluateGlobalTransform(t)
|
310 |
+
wtt, wtr, wts = wt.GetT(), wt.GetR(), wt.GetS()
|
311 |
+
tx.append(wtt[0])
|
312 |
+
ty.append(wtt[1])
|
313 |
+
tz.append(wtt[2])
|
314 |
+
rx.append(wtr[0])
|
315 |
+
ry.append(wtr[1])
|
316 |
+
rz.append(wtr[2])
|
317 |
+
sx.append(wts[0])
|
318 |
+
sy.append(wts[1])
|
319 |
+
sz.append(wts[2])
|
320 |
+
|
321 |
+
if not incl_keyed:
|
322 |
+
return [
|
323 |
+
actors,
|
324 |
+
markers,
|
325 |
+
tx, ty, tz, zeros,
|
326 |
+
rx, ry, rz, zeros,
|
327 |
+
sx, sy, sz, ones
|
328 |
+
]
|
329 |
+
|
330 |
+
keyed_frames = get_keyed_frames_from_curve(c)
|
331 |
+
keyed_bools = [1 if f in keyed_frames else 0 for f in r]
|
332 |
+
|
333 |
+
return [
|
334 |
+
actors,
|
335 |
+
markers,
|
336 |
+
tx, ty, tz, zeros,
|
337 |
+
rx, ry, rz, zeros,
|
338 |
+
sx, sy, sz, ones,
|
339 |
+
keyed_bools
|
340 |
+
]
|
341 |
+
|
342 |
+
|
343 |
class FBXContainer:
|
344 |
def __init__(self, fbx_file: Path,
|
345 |
volume_dims: Tuple[float] = (10., 4., 10.),
|
346 |
+
max_actors: int = 8,
|
347 |
+
pc_size: int = 1024,
|
348 |
+
scale: float = 0.01,
|
349 |
+
debug: int = -1,
|
350 |
+
save_init: bool = True,
|
351 |
+
r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
|
352 |
+
mode: str = 'train'):
|
353 |
"""
|
354 |
Class that stores references to important nodes in an FBX file.
|
355 |
Offers utility functions to quickly load animation data.
|
|
|
357 |
:param volume_dims: `tuple` of `float` that represent the dimensions of the capture volume in meters.
|
358 |
:param max_actors: `int` maximum amount of actors to expect in a point cloud.
|
359 |
:param pc_size: `int` amount of points in a point cloud.
|
360 |
+
:param debug: If higher than -1, will print out debugging statements.
|
361 |
+
:param save_init: If the file is guaranteed to have all data, set to True to automatically call self.init().
|
362 |
+
:param r: Optional frame range that will be passed to init_transforms.
|
363 |
+
:param mode: `str` to indicate whether to store world transforms for inference only. Default 'train'.
|
364 |
"""
|
365 |
if pc_size < max_actors * 73:
|
366 |
raise ValueError('Point cloud size must be large enough to contain the maximum amount of actors * 73'
|
367 |
f' markers: {pc_size}/{max_actors * 73}.')
|
368 |
|
369 |
+
self.debug = debug
|
370 |
# Python ENUM of the C++ time modes.
|
371 |
self.time_modes = globals.get_time_modes()
|
372 |
# Ordered list of marker names. Note: rearrange this in globals.py.
|
|
|
378 |
# Store names of the actors (all parent nodes that have the first 4 markers as children).
|
379 |
self.actor_names = []
|
380 |
|
381 |
+
self.labeled_world_transforms = None
|
382 |
+
self.unlabeled_world_transforms = None
|
383 |
+
|
384 |
# Split the dimensions tuple into its axes for easier access.
|
385 |
self.vol_x = volume_dims[0]
|
386 |
self.vol_y = volume_dims[1]
|
|
|
393 |
self.pc_size = pc_size
|
394 |
|
395 |
self.input_fbx = fbx_file
|
396 |
+
# self.output_fbx = append_suffix_to_fbx(fbx_file, '_INF')
|
397 |
+
self.output_fbx = utils.append_suffix_to_file(fbx_file, '_INF')
|
398 |
self.valid_frames = []
|
399 |
|
400 |
+
# If we know that the input file has valid data,
|
401 |
+
# we can automatically call the init function and ignore missing data.
|
402 |
+
if save_init:
|
403 |
+
self.init(r=r)
|
|
|
404 |
|
405 |
+
def __init_scene(self) -> None:
|
406 |
"""
|
407 |
Stores scene, root, and time_mode properties.
|
408 |
Destroys the importer to remove the reference to the loaded file.
|
|
|
416 |
self.scene = fbx.FbxScene.Create(self.manager, '')
|
417 |
importer.Import(self.scene)
|
418 |
self.root = self.scene.GetRootNode()
|
419 |
+
if self.root is None:
|
420 |
+
raise ValueError('No root node found.')
|
421 |
self.time_mode = self.scene.GetGlobalSettings().GetTimeMode()
|
422 |
fbx.FbxTime.SetGlobalTimeMode(self.time_mode)
|
423 |
|
|
|
425 |
# This will allow us to delete the uploaded file.
|
426 |
importer.Destroy()
|
427 |
|
428 |
+
def __init_anim(self) -> None:
|
429 |
"""
|
430 |
Stores the anim_stack, num_frames, start_frame, end_frame properties.
|
431 |
"""
|
432 |
# Get the animation stack and layer.
|
433 |
anim_stack = self.scene.GetCurrentAnimationStack()
|
434 |
self.anim_layer = anim_stack.GetSrcObject(fbx.FbxCriteria.ObjectType(fbx.FbxAnimLayer.ClassId), 0)
|
435 |
+
if self.anim_layer is None:
|
436 |
+
raise ValueError('No animation layer found.')
|
437 |
|
438 |
# Find the total number of frames to expect from the local time span.
|
439 |
local_time_span = anim_stack.GetLocalTimeSpan()
|
440 |
self.num_frames = int(local_time_span.GetDuration().GetFrameCount())
|
441 |
+
if self.num_frames == 0:
|
442 |
+
raise ValueError('Number of animated frames is 0.')
|
443 |
self.start_frame = local_time_span.GetStart().GetFrameCount()
|
444 |
self.end_frame = local_time_span.GetStop().GetFrameCount()
|
445 |
|
446 |
+
def __init_actors(self, ignore_missing: bool = False) -> None:
|
447 |
"""
|
448 |
Goes through all root children (generation 1).
|
449 |
If a child has 4 markers as children, it is considered an actor (Shogun subject) and appended to actors
|
450 |
and actor_names list properties.
|
451 |
Also initializes an empty valid_frames list for each found actor.
|
452 |
"""
|
453 |
+
ts = fbx.FbxTime()
|
454 |
+
ts.SetFrame(self.start_frame)
|
455 |
+
|
456 |
+
te = fbx.FbxTime()
|
457 |
+
te.SetFrame(self.end_frame)
|
458 |
+
|
459 |
+
names_to_look_for = list(self.marker_names[:4])
|
460 |
# Find all parent nodes (/System, /Unlabeled_Markers, /Actor1, etc).
|
461 |
gen1_nodes = [self.root.GetChild(i) for i in range(self.root.GetChildCount())]
|
462 |
for gen1_node in gen1_nodes:
|
|
|
464 |
range(gen1_node.GetChildCount())] # Actor nodes (/Mimi/Hips, /Mimi/ARIEL, etc)
|
465 |
|
466 |
# If the first 3 marker names are children of this parent, it must be an actor.
|
467 |
+
if all(name in [node.GetName().split(':')[-1] for node in gen2_nodes] for name in names_to_look_for):
|
468 |
self.actor_names.append(gen1_node.GetName())
|
469 |
self.actors.append(gen1_node)
|
470 |
|
471 |
+
if len(self.actors) == 0 and not ignore_missing:
|
472 |
+
raise ValueError('No actors/subjects found. A node is considered an actor ' +
|
473 |
+
'if it has the following children nodes: ' +
|
474 |
+
', '.join(names_to_look_for) + '.')
|
475 |
+
|
476 |
self.actor_count = len(self.actors)
|
477 |
self.valid_frames = [[] for _ in range(self.actor_count)]
|
478 |
|
479 |
+
def __init_markers(self, ignore_missing: bool = False) -> None:
|
480 |
"""
|
481 |
Goes through all actor nodes and stores references to its marker nodes.
|
482 |
"""
|
|
|
490 |
if match_name(child, marker_name, ignore_namespace=True):
|
491 |
actor_markers[marker_name] = child
|
492 |
|
493 |
+
if len(actor_markers) != len(self.marker_names) and not ignore_missing:
|
494 |
+
raise ValueError(f'{actor_node.GetName()} does not have all markers.')
|
495 |
|
496 |
self.markers.append(actor_markers)
|
497 |
|
498 |
+
def __init_unlabeled_markers(self, ignore_missing: bool = False) -> None:
|
499 |
"""
|
500 |
Looks for the Unlabeled_Markers parent node under the root and stores references to all unlabeled marker nodes.
|
501 |
"""
|
|
|
507 |
self.unlabeled_markers = [gen1_node.GetChild(um) for um in range(gen1_node.GetChildCount())]
|
508 |
return
|
509 |
|
510 |
+
if not ignore_missing:
|
511 |
+
raise ValueError('No unlabeled markers found.')
|
512 |
+
|
513 |
+
def init_world_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> None:
|
514 |
+
|
515 |
+
self.init_labeled_world_transforms(r=r, incl_keyed=1)
|
516 |
+
self.init_unlabeled_world_transforms(r=r)
|
517 |
+
|
518 |
+
def init_labeled_world_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
|
519 |
+
incl_keyed: int = 1):
|
520 |
+
|
521 |
+
r = self.convert_r(r)
|
522 |
+
labeled_data = []
|
523 |
+
|
524 |
+
for actor_idx in range(self.actor_count):
|
525 |
+
actor_data = []
|
526 |
+
for marker_idx, (n, m) in enumerate(self.markers[actor_idx].items()):
|
527 |
+
curve = m.LclTranslation.GetCurve(self.anim_layer, 'X', True)
|
528 |
+
marker_data = get_world_transforms(actor_idx + 1, marker_idx + 1, m, r, curve, incl_keyed)
|
529 |
+
actor_data.append(marker_data)
|
530 |
+
self._print(f'Actor {actor_idx} marker {marker_idx} done', 1)
|
531 |
+
labeled_data.append(actor_data)
|
532 |
+
|
533 |
+
wide_layout = np.array(labeled_data)
|
534 |
+
self.labeled_world_transforms = np.transpose(wide_layout, axes=(3, 0, 1, 2))
|
535 |
+
return self.labeled_world_transforms
|
536 |
+
|
537 |
+
def init_unlabeled_world_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> np.array:
|
538 |
+
r = self.convert_r(r)
|
539 |
+
|
540 |
+
unlabeled_data = []
|
541 |
+
|
542 |
+
for ulm in self.unlabeled_markers:
|
543 |
+
curve = ulm.LclTranslation.GetCurve(self.anim_layer, 'X', True)
|
544 |
+
marker_data = get_world_transforms(0, 0, ulm, r, curve, incl_keyed=0)
|
545 |
+
unlabeled_data.append(marker_data)
|
546 |
+
self._print(f'Unlabeled marker {ulm.GetName()} done', 1)
|
547 |
+
|
548 |
+
wide_layout = np.array(unlabeled_data)
|
549 |
+
self.unlabeled_world_transforms = np.transpose(wide_layout, axes=(2, 0, 1))
|
550 |
+
# Returns shape (n_frames, n_unlabeled_markers, 14).
|
551 |
+
return self.unlabeled_world_transforms
|
552 |
+
|
553 |
+
def init(self, ignore_missing_labeled: bool = False, ignore_missing_unlabeled: bool = False,
|
554 |
+
r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> None:
|
555 |
+
self.__init_scene()
|
556 |
+
self.__init_anim()
|
557 |
+
self.__init_actors(ignore_missing=ignore_missing_labeled)
|
558 |
+
self.__init_markers(ignore_missing=ignore_missing_labeled)
|
559 |
+
self.__init_unlabeled_markers(ignore_missing=ignore_missing_unlabeled)
|
560 |
+
self._print('Init done', 0)
|
561 |
+
|
562 |
+
def _print(self, txt: str, lvl: int = 0) -> None:
|
563 |
+
if lvl <= self.debug:
|
564 |
+
print(txt)
|
565 |
+
|
566 |
def _check_actor(self, actor: int = 0):
|
567 |
"""
|
568 |
Safety check to see if the actor `int` is a valid number (to avoid out of range errors).
|
569 |
:param actor: `int` actor index, which should be between 0-max_actors.
|
570 |
"""
|
571 |
+
if not 0 <= actor <= self.actor_count:
|
572 |
+
raise ValueError(f'Actor index must be between 0 and {self.actor_count - 1} ({actor}).')
|
573 |
|
574 |
def _set_valid_frames_for_actor(self, actor: int = 0):
|
575 |
"""
|
|
|
585 |
self._check_actor(actor)
|
586 |
|
587 |
frames = self.get_frame_range()
|
588 |
+
for n, marker in self.markers[actor].items():
|
589 |
# Get the animation curve for local translation x.
|
590 |
t_curve = marker.LclTranslation.GetCurve(self.anim_layer, 'X')
|
591 |
# If an actor was recorded but seems to have no animation curves, we set their valid frames to nothing.
|
592 |
# Then we return, because there is no point in further checking non-existent keyframes.
|
593 |
if t_curve is None:
|
594 |
self.valid_frames[actor] = []
|
595 |
+
self._print('Found no animation curve', 2)
|
596 |
return
|
597 |
|
598 |
# Get all keyframes on the animation curve and store their frame numbers.
|
599 |
+
self._print(f'Checking keyframes for {n}', 2)
|
600 |
keys = [t_curve.KeyGet(i).GetTime().GetFrameCount() for i in range(t_curve.KeyGetCount())]
|
601 |
# Check for each frame in frames if it is present in the list of keyframed frames.
|
602 |
for frame in frames:
|
|
|
606 |
with contextlib.suppress(ValueError):
|
607 |
frames.remove(frame)
|
608 |
|
609 |
+
self._print(f'Found {len(frames)}/{self.num_frames} valid frames for {self.actor_names[actor]}', 1)
|
610 |
self.valid_frames[actor] = frames
|
611 |
|
612 |
# Store all frame lists that have at least 1 frame.
|
|
|
615 |
self.common_frames = [num for num in self.get_frame_range()
|
616 |
if all(num in other_list for other_list in other_lists)]
|
617 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
def _check_valid_frames(self, actor: int = 0):
|
619 |
"""
|
620 |
Safety check to see if the given actor has any valid frames stored.
|
|
|
624 |
self._check_actor(actor)
|
625 |
|
626 |
if not len(self.valid_frames[actor]):
|
627 |
+
self._print(f'Getting missing valid frames for {self.actor_names[actor]}', 1)
|
628 |
self._set_valid_frames_for_actor(actor)
|
629 |
|
630 |
+
def get_transformed_axes(self, actor: int = 0, frame: int = 0) -> Tuple[np.array, np.array, np.array]:
|
631 |
"""
|
632 |
Evaluates all marker nodes for the given actor and modifies the resulting point cloud,
|
633 |
so it is centered and scaled properly for training.
|
|
|
661 |
z /= self.vol_z
|
662 |
y = np.array(y) / self.vol_y
|
663 |
|
664 |
+
# EXTRA: Add any extra modifications to the point cloud here.
|
665 |
+
|
666 |
+
return x, y, z
|
667 |
+
|
668 |
+
def get_transformed_pc(self, actor: int = 0, frame: int = 0, t: str = 'np') -> Union[np.array, List[float]]:
|
669 |
+
|
670 |
+
x, y, z = self.get_transformed_axes(actor, frame)
|
671 |
+
# If we need to return a numpy array, simply vstack the axes to get a shape of (3, 73).
|
672 |
+
# This is in preparation for PyTorch's CNN layers that use input shape (batch_size, C, H, W).
|
673 |
+
if t == 'np':
|
674 |
+
# Exports shape of (3, 9, 9).
|
675 |
+
# return make_pc_ghost_markers(np.vstack((x, y, z)))
|
676 |
+
# Exports shape of (1, 3, 73).
|
677 |
+
return np.vstack((x, y, z))[None, ...]
|
678 |
|
679 |
# Append all values to a new array, one axis at a time.
|
680 |
# This way it will match the column names order.
|
|
|
685 |
pose += [z[i]]
|
686 |
return pose
|
687 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
688 |
def get_frame_range(self) -> List[int]:
|
689 |
"""
|
690 |
Replacement and improvement for:
|
|
|
694 |
"""
|
695 |
return list(range(self.start_frame, self.end_frame))
|
696 |
|
697 |
+
def convert_r(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None):
|
698 |
+
# If r is one int, use 0 as start frame. If r is higher than the total frames, limit the range.
|
699 |
+
if isinstance(r, int):
|
700 |
+
r = list(range(self.num_frames)) if r > self.num_frames else list(range(r))
|
701 |
+
|
702 |
+
# A tuple of 2 indicates a frame range without step.
|
703 |
+
elif isinstance(r, tuple) and len(r) == 2:
|
704 |
+
# If the requested frame range is longer than the total frames, limit the range.
|
705 |
+
if r[1] - r[0] > self.num_frames:
|
706 |
+
r = list(range(r[0], r[0] + self.num_frames))
|
707 |
+
else:
|
708 |
+
r = list(range(r[0], r[1]))
|
709 |
+
|
710 |
+
# A tuple of 3 indicates a frame range with step.
|
711 |
+
elif isinstance(r, tuple) and len(r) == 3:
|
712 |
+
# If the requested frame range is longer than the total frames, limit the range.
|
713 |
+
if r[1] - r[0] > self.num_frames:
|
714 |
+
r = list(range(r[0], r[0] + self.num_frames, r[2]))
|
715 |
+
else:
|
716 |
+
r = list(range(r[0], r[1], r[2]))
|
717 |
+
|
718 |
+
# If r is None, return the default frame range.
|
719 |
+
else:
|
720 |
+
r = self.get_frame_range()
|
721 |
+
|
722 |
+
return r
|
723 |
+
|
724 |
def columns_from_joints(self) -> List[str]:
|
725 |
"""
|
726 |
Generates a list of column names based on the (order of the) marker names.
|
|
|
805 |
self._check_valid_frames(actor)
|
806 |
return self.valid_frames[actor]
|
807 |
|
808 |
+
def extract_valid_translations_per_actor(self, actor: int = 0, t: str = 'np'):
|
809 |
"""
|
810 |
Assembles the poses for the valid frames for the given actor as a 2D list where each row is a pose.
|
811 |
:param actor: `int` actor index.
|
812 |
+
:param t: If 'np', returns a (3, -1) `np.array`. Otherwise returns a list of floats.
|
813 |
:return: List of poses, where each pose is a list of `float` translations.
|
814 |
"""
|
815 |
# Ensure the actor index is within range.
|
816 |
self._check_actor(actor)
|
817 |
+
self._check_valid_frames(actor)
|
818 |
|
819 |
+
# Returns shape (n_valid_frames, 3, 73).
|
820 |
+
return np.vstack([self.get_transformed_pc(actor, frame) for frame in self.valid_frames[actor]])
|
|
|
|
|
|
|
|
|
|
|
821 |
|
822 |
+
# poses = []
|
823 |
+
# # Go through all valid frames for this actor.
|
824 |
+
# # Note that these frames can be different per actor.
|
825 |
+
# for frame in self.valid_frames[actor]:
|
826 |
+
# self._print(f' Extracting frame: {frame}', 1)
|
827 |
+
# # Get the centered point cloud as a 1D list.
|
828 |
+
# pose_at_frame = self.get_transformed_pc(actor, frame, t)
|
829 |
+
# poses.append(pose_at_frame)
|
830 |
+
#
|
831 |
+
# return np.array(poses) if t == 'np' else poses
|
832 |
|
833 |
+
def extract_all_valid_translations(self, t: str = 'np') -> Union[np.array, pd.DataFrame]:
|
834 |
"""
|
835 |
Convenience method that calls self.extract_valid_translations_per_actor() for all actors
|
836 |
and returns a `DataFrame` containing all poses after each other.
|
837 |
+
:param t: If 'np', returns a `np.array`. Otherwise, returns a DataFrame.
|
838 |
+
:return: `np.array` or `DataFrame` where each row is a pose.
|
839 |
+
"""
|
840 |
+
# Returns shape (n_total_valid_frames, 3, 73).
|
841 |
+
return np.vstack([self.extract_valid_translations_per_actor(i) for i in range(self.actor_count)])
|
842 |
+
# all_poses = []
|
843 |
+
# # For each actor, add their valid poses to all_poses.
|
844 |
+
# for i in range(self.actor_count):
|
845 |
+
# self._print(f'Extracting actor {self.actor_names[i]}', 0)
|
846 |
+
# all_poses.extend(self.extract_valid_translations_per_actor(i, t))
|
847 |
+
#
|
848 |
+
# self._print('Extracting finished')
|
849 |
+
# # Note that the column names are/must be in the same order as the markers.
|
850 |
+
# if t == 'np':
|
851 |
+
# # Shape: (n_poses, 3, 73).
|
852 |
+
# return np.array(all_poses)
|
853 |
+
# else:
|
854 |
+
# return pd.DataFrame(all_poses, columns=self.columns_from_joints())
|
855 |
+
|
856 |
+
def extract_training_translations(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> np.array:
|
857 |
+
if self.labeled_world_transforms is None:
|
858 |
+
self.init_labeled_world_transforms(r=r, incl_keyed=1)
|
859 |
+
|
860 |
+
# Returns (n_frames, n_actors, 73, 15).
|
861 |
+
l_shape = self.labeled_world_transforms.shape
|
862 |
+
# Flatten the array, so we get a list of frames.
|
863 |
+
# Reshape to (n_frames * n_actors, 73, 15).
|
864 |
+
flattened = self.labeled_world_transforms.reshape(-1, l_shape[2], l_shape[3])
|
865 |
+
# Isolates the poses with all keyframes present by checking the last elements.
|
866 |
+
# Start with the mask.
|
867 |
+
# Returns shape of (n_frames * n_actors, 73).
|
868 |
+
mask = (flattened[..., -1] == 1)
|
869 |
+
# We only need a filter for the first dimension, so use .all to check if all markers
|
870 |
+
# have a keyframe. This results in shape (n_frames * n_actors,).
|
871 |
+
mask = mask.all(axis=1)
|
872 |
+
# Now isolate the right frames with the mask and remove the last element of the last dimension,
|
873 |
+
# because it won't be useful anymore.
|
874 |
+
valid_poses = flattened[mask][..., :-1]
|
875 |
+
|
876 |
+
# Now we need to center the tx and tz axes.
|
877 |
+
for valid_pose in valid_poses:
|
878 |
+
for axis in [2, 4]:
|
879 |
+
valid_pose[:, axis] = center_axis(valid_pose[:, axis])
|
880 |
+
return self.transform_translations(valid_poses)
|
881 |
+
|
882 |
+
def extract_inf_translations(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
|
883 |
+
merged: bool = True) -> Union[np.array, Tuple[np.array, np.array]]:
|
884 |
+
if self.labeled_world_transforms is None:
|
885 |
+
self.init_labeled_world_transforms(r=r, incl_keyed=0)
|
886 |
+
if self.unlabeled_world_transforms is None:
|
887 |
+
self.init_unlabeled_world_transforms(r=r)
|
888 |
+
|
889 |
+
ls = self.labeled_world_transforms.shape
|
890 |
+
# Returns shape (n_frames, 73 * n_actors, 14).
|
891 |
+
flat_labeled = self.labeled_world_transforms.reshape(ls[0], -1, ls[-1])[..., :14]
|
892 |
+
|
893 |
+
if merged:
|
894 |
+
return utils.merge_labeled_and_unlabeled_data(labeled=flat_labeled,
|
895 |
+
unlabeled=self.unlabeled_world_transforms,
|
896 |
+
pc_size=self.pc_size)
|
897 |
+
else:
|
898 |
+
return flat_labeled, self.unlabeled_world_transforms
|
899 |
|
900 |
def transform_translations(self, w: np.array) -> np.array:
|
901 |
"""
|
|
|
907 |
raise ValueError(f'Array does not have 3 dimensions: {w.ndim}/3.')
|
908 |
|
909 |
# If the last dimension has 3 elements, it is a translation vector of shape (tx, ty, tz).
|
910 |
+
# If it has 14 elements, it is a full marker row of shape (actor, marker, tx, ty, tz, tw, rx, ry, rz, tw, etc).
|
911 |
start = 0 if w.shape[-1] == 3 else 2
|
912 |
|
913 |
# First multiply by self.scale, which turns meters to centimeters.
|
|
|
971 |
# so return the cloud as a np array that cuts off any excessive markers.
|
972 |
return np.array(cloud)[:self.pc_size]
|
973 |
|
974 |
+
def get_dc(self, frame: int = 0) -> np.array:
|
975 |
+
self._print(f'Getting sparse cloud for frame {frame}', 2)
|
976 |
+
cloud = self.get_sc(frame)
|
977 |
+
missing = self.pc_size - cloud.shape[0]
|
978 |
+
|
979 |
+
# Only bother creating ghost markers if there are any missing rows.
|
980 |
+
# If we need to add ghost markers, add them before the existing cloud,
|
981 |
+
# so that the cloud will remain a sorted array regarding the actor and marker classes.
|
982 |
+
if missing > 0:
|
983 |
+
self._print('Making ghost markers', 2)
|
984 |
+
ghost_cloud = make_ghost_markers(missing)
|
985 |
+
cloud = np.vstack([ghost_cloud, cloud])
|
986 |
+
|
987 |
+
return cloud
|
988 |
+
|
989 |
def get_tsc(self) -> np.array:
|
990 |
"""
|
991 |
Convenience method that calls self.get_sparse_cloud() for all frames in the frame range
|
|
|
994 |
"""
|
995 |
return np.array([self.get_sc(f) for f in self.get_frame_range()])
|
996 |
|
997 |
+
def get_tdc(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) -> np.array:
|
998 |
"""
|
999 |
For each frame in the frame range, collects the point cloud that is present in the file.
|
1000 |
Then it creates a ghost cloud of random markers that are treated as unlabeled markers,
|
|
|
1006 |
with a shape of (self.num_frames, self.pc_size, 5).
|
1007 |
"""
|
1008 |
|
1009 |
+
r = self.convert_r(r)
|
1010 |
|
1011 |
+
# results = utils.parallel_process(r, self.get_dc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1012 |
|
1013 |
+
return np.array([self.get_dc(f) for f in r])
|
|
|
|
|
1014 |
|
1015 |
+
def modify_actor_pose(self, actor: np.array) -> np.array:
|
1016 |
+
# Scale to cm.
|
1017 |
+
actor[:, 2:5] *= self.scale
|
1018 |
+
# Move the point cloud to the center of the x and y axes. This will put the actor in the middle.
|
1019 |
+
for axis in range(2, 5):
|
1020 |
+
actor[:, axis] = center_axis(actor[:, axis])
|
1021 |
|
1022 |
+
# Move the actor to the middle of the volume floor by adding volume_dim/2 to x and z.
|
1023 |
+
actor[:, 2] += self.vol_x / 2.
|
1024 |
+
actor[:, 4] += self.vol_z / 2.
|
1025 |
|
1026 |
+
# Squeeze the actor into the 1x1 plane for the neural network by dividing the axes.
|
1027 |
+
actor[:, 2] /= self.vol_x
|
1028 |
+
actor[:, 3] /= self.vol_y
|
1029 |
+
actor[:, 4] /= self.vol_z
|
1030 |
|
1031 |
def split_tdc(self, cloud: np.array = None) \
|
1032 |
-> Tuple[np.array, np.array, np.array, np.array, np.array]:
|
|
|
1042 |
:return: Return tuple of `np.array` as (actor classes, marker classes, translation vectors).
|
1043 |
"""
|
1044 |
if cloud is None:
|
1045 |
+
cloud = self.extract_inf_translations()
|
1046 |
+
|
1047 |
+
if cloud.shape[1] != self.pc_size:
|
1048 |
+
raise ValueError(f"Dense cloud doesn't have enough points. {cloud.shape[1]}/{self.pc_size}.")
|
1049 |
+
if cloud.shape[2] < 14:
|
1050 |
+
raise ValueError(f"Dense cloud is missing columns: {cloud.shape[2]}.")
|
1051 |
|
1052 |
+
# Return np arrays as (actor classes, marker classes, translation vectors, rotation vectors, scale vectors).
|
1053 |
+
return cloud[:, :, 0], cloud[:, :, 1], cloud[:, :, 2:5], cloud[:, :, 6:9], cloud[:, :, 10:13]
|
|
|
|
|
1054 |
|
1055 |
+
def get_split_transforms(self, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
|
1056 |
+
mode: str = 'train') -> Tuple[np.array, np.array, np.array, np.array, np.array]:
|
1057 |
+
"""
|
1058 |
+
Splits a timeline dense cloud with shape (self.num_frames, self.pc_size, 5) into 3 different
|
1059 |
+
arrays:
|
1060 |
+
1. A `np.array` with the actor classes as shape (self.num_frames, self.pc_size, 1).
|
1061 |
+
2. A `np.array` with the marker classes as shape (self.num_frames, self.pc_size, 1).
|
1062 |
+
3. A `np.array` with the translation floats as shape (self.num_frames, self.pc_size, 4).
|
1063 |
+
4. A `np.array` with the rotation Euler angles as shape (self.num_frames, self.pc_size, 3).
|
1064 |
+
:return: Return tuple of `np.array` as (actor classes, marker classes, translation vectors).
|
1065 |
+
"""
|
1066 |
+
cloud = self.extract_training_translations(r) if mode == 'train' else self.extract_inf_translations(r)
|
1067 |
# Return np arrays as (actor classes, marker classes, translation vectors, rotation vectors, scale vectors).
|
1068 |
return cloud[:, :, 0], cloud[:, :, 1], cloud[:, :, 2:5], cloud[:, :, 6:9], cloud[:, :, 10:13]
|
1069 |
|
|
|
1083 |
"""
|
1084 |
return 'UNLABELED' if int(c) == 0 else self.marker_names[int(c) - 1]
|
1085 |
|
1086 |
+
def export_train_data(self, output_file: Path, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None) \
|
1087 |
+
-> Union[bytes, pd.DataFrame, np.array]:
|
1088 |
+
if output_file is None:
|
1089 |
+
df = pd.DataFrame(self.extract_training_translations(r))
|
|
|
1090 |
return df.to_csv(index=False).encode('utf-8')
|
1091 |
|
1092 |
+
elif output_file.suffix == '.npy':
|
1093 |
+
array_4d = self.extract_training_translations(r)
|
1094 |
+
np.save(str(output_file), array_4d)
|
1095 |
+
self._print(f'Exported train data to {output_file}', 0)
|
1096 |
+
return array_4d
|
1097 |
+
|
1098 |
+
elif output_file.suffix == '.h5':
|
1099 |
+
array_4d = self.extract_training_translations(r)
|
1100 |
+
with h5py.File(output_file, 'w') as h5f:
|
1101 |
+
h5f.create_dataset('array_data', data=array_4d, compression='gzip', compression_opts=9)
|
1102 |
+
self._print(f'Exported train data to {output_file}', 0)
|
1103 |
+
return array_4d
|
1104 |
+
|
1105 |
+
else:
|
1106 |
+
raise ValueError('Invalid file extension. Must be .csv or .npy')
|
1107 |
+
|
1108 |
+
def export_test_data(self, output_file: Path, r: Union[int, Tuple[int, int], Tuple[int, int, int]] = None,
|
1109 |
+
merged: bool = True) -> Union[np.array, Tuple[np.array, np.array]]:
|
1110 |
+
# Retrieve the clean world transforms.
|
1111 |
+
# If merged is True, this will be one array of shape (n_frames, pc_size, 14).
|
1112 |
+
# If merged is False, this will be two arrays, one of shape (n_frames, 73 * n_actors, 14),
|
1113 |
+
# and one of shape (n_frames, n_unlabeled_markers, 14).
|
1114 |
+
array_4d = self.extract_inf_translations(r, merged=merged)
|
1115 |
|
1116 |
+
if output_file.suffix == '.h5':
|
1117 |
+
with h5py.File(output_file, 'w') as h5f:
|
1118 |
+
if merged:
|
1119 |
+
# If merged, this can be one dataset.
|
1120 |
+
h5f.create_dataset('merged_data', data=array_4d, compression='gzip', compression_opts=9)
|
1121 |
|
1122 |
+
else:
|
1123 |
+
# If not merged, we split it up because array_4d is a tuple of 2.
|
1124 |
+
h5f.create_dataset('labeled', data=array_4d[0], compression='gzip', compression_opts=9)
|
1125 |
+
h5f.create_dataset('unlabeled', data=array_4d[1], compression='gzip', compression_opts=9)
|
1126 |
+
|
1127 |
+
self._print(f'Exported test data to {output_file}', 0)
|
1128 |
+
|
1129 |
+
return array_4d
|
1130 |
|
1131 |
def export_fbx(self, output_file: Path = None) -> bool:
|
1132 |
"""
|
|
|
1143 |
# Initialize the exporter with the output file path
|
1144 |
result = exporter.Initialize(str(output_file))
|
1145 |
if not result:
|
1146 |
+
self._print(f"Failed to initialize the exporter for file '{output_file}'.", 0)
|
1147 |
return False
|
1148 |
|
1149 |
# Export the scene
|
1150 |
result = exporter.Export(self.scene)
|
1151 |
if not result:
|
1152 |
+
self._print(f"Failed to export the scene to file '{output_file}'.", 0)
|
1153 |
return False
|
1154 |
|
1155 |
# Clean up the manager and exporter
|
1156 |
exporter.Destroy()
|
1157 |
|
1158 |
+
self._print('Export finished', 0)
|
1159 |
+
|
1160 |
return True
|
1161 |
|
1162 |
def remove_node(self, node: fbx.FbxNode, recursive: bool = False) -> bool:
|
|
|
1290 |
for marker_class, (marker_name, marker) in enumerate(self.markers[actor].items(), start=1):
|
1291 |
marker_keys = actor_keys.get(marker_class)
|
1292 |
if marker_keys:
|
1293 |
+
self._print(f'Replacing keys for {marker_name}', 1)
|
1294 |
self.replace_keyframes_per_marker(marker, marker_keys)
|
1295 |
|
1296 |
def replace_keyframes_for_all_actors(self, key_dict: dict) -> None:
|
|
|
1299 |
:param key_dict: `dict` with all actor keyframes.
|
1300 |
"""
|
1301 |
for actor_idx in range(self.actor_count):
|
1302 |
+
actor_dict = key_dict.get(actor_idx + 1)
|
1303 |
if actor_dict:
|
1304 |
+
self._print(f'Replacing keys for actor {actor_idx}', 1)
|
1305 |
self.replace_keyframes_per_actor(actor_idx, actor_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
labeler/data_setup.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch.utils import data
|
7 |
+
import math
|
8 |
+
|
9 |
+
|
10 |
+
def apply_random_y_rotation(point_cloud_data: torch.Tensor) -> torch.Tensor:
|
11 |
+
# Convert the random angle from degrees to radians
|
12 |
+
angle = (torch.rand(1).item() * 2 - 1) * 180 * torch.tensor(math.pi / 180, device='cuda')
|
13 |
+
|
14 |
+
# Create the rotation matrix for the y-axis
|
15 |
+
rotation_matrix = torch.tensor([[torch.cos(angle), 0, torch.sin(angle)],
|
16 |
+
[0, 1, 0],
|
17 |
+
[-torch.sin(angle), 0, torch.cos(angle)]], device='cuda')
|
18 |
+
|
19 |
+
# Apply the rotation to the point cloud data
|
20 |
+
return torch.matmul(point_cloud_data, rotation_matrix.T)
|
21 |
+
|
22 |
+
|
23 |
+
class PointCloudDataset(data.Dataset):
|
24 |
+
def __init__(self, file: Path,
|
25 |
+
n_samples=100,
|
26 |
+
max_actors: int = 8,
|
27 |
+
translation_factor=0.1,
|
28 |
+
max_overlap: Tuple[float] = (0.2, 0.2, 0.2)):
|
29 |
+
point_clouds_np = torch.tensor(np.load(str(file)), dtype=torch.float32, device='cuda')
|
30 |
+
self.sparse_point_clouds = point_clouds_np
|
31 |
+
self.n_samples = n_samples
|
32 |
+
self.max_actors = max_actors
|
33 |
+
self.translation_factor = translation_factor
|
34 |
+
self.max_overlap = max_overlap
|
35 |
+
|
36 |
+
# Generate a random permutation of indices.
|
37 |
+
self.indices = torch.randperm(len(self.sparse_point_clouds))
|
38 |
+
|
39 |
+
dataset = []
|
40 |
+
for _ in range(n_samples):
|
41 |
+
accumulated_cloud = []
|
42 |
+
# TODO: Get a random number up to the max of actors.
|
43 |
+
# TODO: Transform one row of the available rows, and check if it doesn't overlap.
|
44 |
+
# TODO: Accumulate all actors into one point cloud and append that to dataset.
|
45 |
+
# TODO: __getitem__() needs to get one of these point cloud rows.
|
46 |
+
for i in range(max_actors):
|
47 |
+
|
48 |
+
# Get a point cloud from the tensor using the shuffled index, shape (1, 1024).
|
49 |
+
point_cloud = self.sparse_point_clouds[self.indices[index]]
|
50 |
+
|
51 |
+
point_cloud_data = point_cloud[:, 2:5] # returns shape: (1024, 3)
|
52 |
+
|
53 |
+
valid_transform = False
|
54 |
+
while not valid_transform:
|
55 |
+
|
56 |
+
point_cloud = point_cloud_data.clone()
|
57 |
+
# Randomly translate the point cloud along the x and z axes
|
58 |
+
|
59 |
+
self.apply_random_translation(point_cloud)
|
60 |
+
# Apply random rotation around the y-axis
|
61 |
+
rotated_point_cloud_data = apply_random_y_rotation(point_cloud)
|
62 |
+
|
63 |
+
if not does_overlap(accumulated_cloud, point_cloud, self.max_overlap):
|
64 |
+
accumulated_cloud.append(point_cloud)
|
65 |
+
valid_transform = True
|
66 |
+
|
67 |
+
def apply_random_translation(self, point_cloud: torch.Tensor) -> None:
|
68 |
+
x_translation = (torch.rand(1).item() * 2 - 1) * self.translation_factor
|
69 |
+
z_translation = (torch.rand(1).item() * 2 - 1) * self.translation_factor
|
70 |
+
point_cloud[:, [0, 2]] += torch.tensor([x_translation, z_translation], device='cuda')
|
71 |
+
|
72 |
+
def fill_point_cloud(self, point_cloud):
|
73 |
+
target_num_points = 73 * self.max_actors
|
74 |
+
current_num_points = point_cloud.shape[1]
|
75 |
+
|
76 |
+
if current_num_points < target_num_points:
|
77 |
+
num_points_to_add = target_num_points - current_num_points
|
78 |
+
random_indices = torch.randint(0, current_num_points, (num_points_to_add,))
|
79 |
+
additional_points = point_cloud[:, random_indices, :]
|
80 |
+
|
81 |
+
filled_point_cloud = torch.cat((point_cloud, additional_points), dim=1)
|
82 |
+
else:
|
83 |
+
filled_point_cloud = point_cloud
|
84 |
+
|
85 |
+
return filled_point_cloud
|
86 |
+
|
87 |
+
def __getitem__(self, index):
|
88 |
+
|
89 |
+
point_cloud = np.vstack(accumulated_cloud)
|
90 |
+
# Separate the labels from the point cloud data
|
91 |
+
actor_labels = point_cloud[:, :, 0] # shape: (1024,)
|
92 |
+
marker_labels = point_cloud[:, :, 1] # shape: (1024,)
|
93 |
+
|
94 |
+
return actor_labels, marker_labels, rotated_point_cloud_data
|
95 |
+
|
96 |
+
def __len__(self):
|
97 |
+
return len(self.sparse_point_clouds)
|
98 |
+
|
99 |
+
|
100 |
+
def does_overlap(accumulated_point_cloud, new_point_cloud, overlap_thresholds=(0.2, 0.2, 0.2)):
|
101 |
+
def project_to_axis(point_cloud, axis):
|
102 |
+
projected_points = point_cloud.clone()
|
103 |
+
projected_points[:, axis] = 0
|
104 |
+
return projected_points
|
105 |
+
|
106 |
+
def get_bounding_box_2d(points):
|
107 |
+
min_values, _ = torch.min(points, dim=0)
|
108 |
+
max_values, _ = torch.max(points, dim=0)
|
109 |
+
return min_values, max_values
|
110 |
+
|
111 |
+
def check_surface_area_overlap(bb1_min, bb1_max, bb2_min, bb2_max, axis, overlap_threshold):
|
112 |
+
bb1_area = (bb1_max[axis] - bb1_min[axis]) * (bb1_max[1] - bb1_min[1])
|
113 |
+
bb2_area = (bb2_max[axis] - bb2_min[axis]) * (bb2_max[1] - bb2_min[1])
|
114 |
+
|
115 |
+
overlap_min = torch.max(bb1_min, bb2_min)
|
116 |
+
overlap_max = torch.min(bb1_max, bb2_max)
|
117 |
+
|
118 |
+
overlap_area = (overlap_max[axis] - overlap_min[axis]) * (overlap_max[1] - overlap_min[1])
|
119 |
+
overlap_area = torch.max(torch.tensor(0.0, device='cuda'), overlap_area) # Clamp to 0 if negative
|
120 |
+
|
121 |
+
overlap_percentage = overlap_area / torch.min(bb1_area, bb2_area)
|
122 |
+
|
123 |
+
return overlap_percentage >= overlap_threshold
|
124 |
+
|
125 |
+
new_point_cloud_xz = project_to_axis(new_point_cloud, 1) # Project to xz-plane (remove y-axis values)
|
126 |
+
new_point_cloud_min, new_point_cloud_max = get_bounding_box_2d(new_point_cloud_xz)
|
127 |
+
|
128 |
+
overlaps = []
|
129 |
+
|
130 |
+
for pc in accumulated_point_cloud:
|
131 |
+
for axis in range(len(overlap_thresholds)):
|
132 |
+
pc_xz = project_to_axis(pc, axis) # Project to xz-plane (remove y-axis values)
|
133 |
+
pc_min, pc_max = get_bounding_box_2d(pc_xz)
|
134 |
+
|
135 |
+
if all(
|
136 |
+
check_surface_area_overlap(
|
137 |
+
new_point_cloud_min,
|
138 |
+
new_point_cloud_max,
|
139 |
+
pc_min,
|
140 |
+
pc_max,
|
141 |
+
axis,
|
142 |
+
overlap_thresholds[axis],
|
143 |
+
)
|
144 |
+
for axis in range(len(overlap_thresholds))
|
145 |
+
):
|
146 |
+
return True
|
147 |
+
|
148 |
+
return False
|
149 |
+
|
150 |
+
|
151 |
+
class NoOverlapDataLoader(data.DataLoader):
|
152 |
+
def __init__(self, dataset: data.Dataset, max_overlap: Tuple[float] = (0.2, 0.2, 0.2), *args, **kwargs):
|
153 |
+
super().__init__(dataset, *args, **kwargs)
|
154 |
+
self.max_overlap = max_overlap
|
155 |
+
|
156 |
+
def __iter__(self):
|
157 |
+
accumulated_point_clouds = []
|
158 |
+
for actor_labels, marker_labels, point_cloud_data in super().__iter__():
|
159 |
+
if not does_overlap(accumulated_point_clouds, point_cloud_data, self.max_overlap):
|
160 |
+
accumulated_point_clouds.append(point_cloud_data)
|
161 |
+
yield actor_labels, marker_labels, point_cloud_data
|
preprocess_files.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
# Import custom libs.
|
5 |
+
import fbx_handler
|
6 |
+
import utils
|
7 |
+
|
8 |
+
|
9 |
+
def process_fbx_files(source_folder: Path, train_folder: Path, test_folder: Path, v: int = 1):
|
10 |
+
# Delete the existing folders and make them again, because the array4d_to_h5 function will append
|
11 |
+
# new data to any existing files.
|
12 |
+
shutil.rmtree(train_folder)
|
13 |
+
shutil.rmtree(test_folder)
|
14 |
+
train_folder.mkdir(parents=True, exist_ok=True)
|
15 |
+
test_folder.mkdir(parents=True, exist_ok=True)
|
16 |
+
|
17 |
+
files = list(source_folder.glob('*.fbx'))
|
18 |
+
# files = [Path('G:/Firestorm/mocap-ai/data/fbx/mes-1/HangoutSpot_1_003.fbx')]
|
19 |
+
|
20 |
+
# Create Paths to new files that will contain all data.
|
21 |
+
train_all = train_folder / 'ALL.h5'
|
22 |
+
test_all = test_folder / 'ALL.h5'
|
23 |
+
|
24 |
+
with utils.Timer('Extracting took'):
|
25 |
+
# Iterate through all .fbx files in the source folder
|
26 |
+
for idx, fbx_file in enumerate(files):
|
27 |
+
print(f'{idx + 1}/{len(files)}: {fbx_file}')
|
28 |
+
# Create a new class object with the file path.
|
29 |
+
my_obj = fbx_handler.FBXContainer(fbx_file, max_actors=4, pc_size=296, debug=0, save_init=True)
|
30 |
+
# Init world transforms for labeled and unlabeled data. This will store all relevant transform info.
|
31 |
+
with utils.Timer('Getting world transforms took'):
|
32 |
+
my_obj.init_world_transforms()
|
33 |
+
# Define the export file path with the same file name but in the export folder
|
34 |
+
export_train_path = train_folder / fbx_file.with_suffix('.h5').name
|
35 |
+
export_test_path = test_folder / fbx_file.with_suffix('.h5').name
|
36 |
+
|
37 |
+
# Get the train data as an array of shape (n_valid_frames, 73, 14).
|
38 |
+
# This will also export it to a h5 file just in case.
|
39 |
+
train_data = my_obj.export_train_data(export_train_path)
|
40 |
+
print(f'Train shape: {train_data.shape}')
|
41 |
+
# Append the array to the existing ALL file.
|
42 |
+
utils.array4d_to_h5(array_4ds=(train_data,),
|
43 |
+
output_file=train_all,
|
44 |
+
datasets=(fbx_file.stem,))
|
45 |
+
|
46 |
+
# Do the same thing for the test data.
|
47 |
+
test_data = my_obj.export_test_data(export_test_path, merged=False)
|
48 |
+
print(f'Test labeled shape: {test_data[0].shape}')
|
49 |
+
print(f'Test unlabeled shape: {test_data[1].shape}')
|
50 |
+
print(f'Minimum cloud size: {test_data[0].shape[1] + test_data[1].shape[1]}')
|
51 |
+
utils.array4d_to_h5(array_4ds=test_data,
|
52 |
+
output_file=test_all,
|
53 |
+
group=fbx_file.stem,
|
54 |
+
datasets=('labeled', 'unlabeled'))
|
55 |
+
|
56 |
+
print('--- FINAL ---')
|
57 |
+
# Just to be sure, print the shapes of the final results.
|
58 |
+
with utils.Timer('Loading training data took'):
|
59 |
+
print(f"Final train shape: {utils.h5_to_array4d(train_all, mode='train').shape}")
|
60 |
+
|
61 |
+
with utils.Timer('Loading testing data took'):
|
62 |
+
print(f"Final test shape: {utils.h5_to_array4d(test_all, mode='test').shape}")
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
source = Path('G:/Firestorm/mocap-ai/data/fbx/mes-1/')
|
67 |
+
train = Path('G:/Firestorm/mocap-ai/data/h5/mes-1/train')
|
68 |
+
test = Path('G:/Firestorm/mocap-ai/data/h5/mes-1/test')
|
69 |
+
|
70 |
+
with utils.Timer('Full execution took'):
|
71 |
+
process_fbx_files(source, train, test)
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
streamlit~=1.21.0
|
2 |
pandas~=1.3.5
|
3 |
-
numpy~=1.21.5
|
|
|
|
|
|
1 |
streamlit~=1.21.0
|
2 |
pandas~=1.3.5
|
3 |
+
numpy~=1.21.5
|
4 |
+
torch~=1.13.1
|
5 |
+
h5py
|
utils.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cProfile
|
2 |
+
import pstats
|
3 |
+
import time
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import List, Tuple
|
6 |
+
|
7 |
+
import h5py
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
def append_suffix_to_file(file_path: Path, suffix: str = '_INF', ext: str = None):
|
12 |
+
"""
|
13 |
+
Adds a suffix to the given file path.
|
14 |
+
:param file_path: `Path` object to the original file.
|
15 |
+
:param suffix: `str` suffix to add to the end of the original file name.
|
16 |
+
:param ext: `str` potential new file extension.
|
17 |
+
:return: Updated `Path`.
|
18 |
+
"""
|
19 |
+
if ext:
|
20 |
+
file_path = file_path.with_suffix(ext)
|
21 |
+
new_file_name = file_path.stem + suffix + file_path.suffix
|
22 |
+
return file_path.with_name(new_file_name)
|
23 |
+
|
24 |
+
|
25 |
+
def is_int_in_list(n: int, l: List[int]) -> int:
|
26 |
+
if l[0] > n:
|
27 |
+
return 0
|
28 |
+
|
29 |
+
for e in l:
|
30 |
+
if e == n:
|
31 |
+
return 1
|
32 |
+
elif e > n:
|
33 |
+
return 0
|
34 |
+
|
35 |
+
return 0
|
36 |
+
|
37 |
+
|
38 |
+
def array4d_to_h5(array_4ds: Tuple, output_file: Path, group: str = None, datasets: Tuple = 'array_data'):
|
39 |
+
if len(array_4ds) != len(datasets):
|
40 |
+
raise ValueError(f'Amount of arrays {len(array_4ds)} must match amount of dataset names {len(datasets)}.')
|
41 |
+
with h5py.File(output_file, 'a') as h5f:
|
42 |
+
if group is not None:
|
43 |
+
grp = h5f.create_group(group)
|
44 |
+
for i in range(len(array_4ds)):
|
45 |
+
grp.create_dataset(name=datasets[i], data=array_4ds[i], compression='gzip', compression_opts=9)
|
46 |
+
else:
|
47 |
+
for i in range(len(array_4ds)):
|
48 |
+
h5f.create_dataset(name=datasets[i], data=array_4ds[i], compression='gzip', compression_opts=9)
|
49 |
+
|
50 |
+
|
51 |
+
def h5_to_array4d(input_file: Path, mode: str = 'train', pc_size: int = 1024) -> np.array:
|
52 |
+
with h5py.File(input_file, 'r') as h5f:
|
53 |
+
if mode == 'train':
|
54 |
+
return np.vstack([np.array(h5f[key]) for key in h5f.keys()])
|
55 |
+
|
56 |
+
data = []
|
57 |
+
for grp_name in h5f.keys():
|
58 |
+
grp = h5f[grp_name]
|
59 |
+
labeled = np.array(grp['labeled'])
|
60 |
+
unlabeled = np.array(grp['unlabeled'])
|
61 |
+
data.append(merge_labeled_and_unlabeled_data(labeled, unlabeled, pc_size=pc_size))
|
62 |
+
|
63 |
+
return np.vstack(data)
|
64 |
+
|
65 |
+
|
66 |
+
def merge_labeled_and_unlabeled_data(labeled: np.array, unlabeled: np.array, pc_size: int) -> np.array:
|
67 |
+
missing = pc_size - (labeled.shape[1] + unlabeled.shape[1])
|
68 |
+
if missing <= 0:
|
69 |
+
# Returns shape (n_frames, self.pc_size, 14).
|
70 |
+
return np.concatenate((unlabeled, labeled), axis=1)[:, -pc_size:]
|
71 |
+
|
72 |
+
missing_markers = np.random.rand(labeled.shape[0], missing, labeled.shape[-1])
|
73 |
+
missing_markers[:, :, 0] = 0.
|
74 |
+
missing_markers[:, :, 1] = 0.
|
75 |
+
|
76 |
+
# Returns shape (n_frames, self.pc_size, 14).
|
77 |
+
return np.concatenate((missing_markers,
|
78 |
+
unlabeled,
|
79 |
+
labeled), axis=1)
|
80 |
+
|
81 |
+
|
82 |
+
class Timer:
|
83 |
+
def __init__(self, txt: str = 'Execution time: ', profiler: bool = False):
|
84 |
+
self.txt = txt
|
85 |
+
self.profiler = profiler
|
86 |
+
|
87 |
+
def __enter__(self):
|
88 |
+
self.start_time = time.time()
|
89 |
+
if self.profiler:
|
90 |
+
self.p = cProfile.Profile()
|
91 |
+
self.p.enable()
|
92 |
+
return self
|
93 |
+
|
94 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
95 |
+
self.end_time = time.time()
|
96 |
+
dif = self.end_time - self.start_time
|
97 |
+
print(f"{self.txt}: {dif:.4f} seconds")
|
98 |
+
|
99 |
+
if self.profiler:
|
100 |
+
self.p.disable()
|
101 |
+
stats = pstats.Stats(self.p).sort_stats('time')
|
102 |
+
stats.print_stats()
|
103 |
+
|
104 |
+
|