Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -4,76 +4,77 @@ import numpy as np | |
| 4 | 
             
            import pandas as pd
         | 
| 5 | 
             
            import tensorflow as tf
         | 
| 6 | 
             
            from tensorflow.keras.models import load_model
         | 
| 7 | 
            -
             | 
| 8 | 
            -
            from werkzeug.utils import secure_filename
         | 
| 9 | 
             
            import biosppy.signals.ecg as ecg
         | 
|  | |
|  | |
| 10 |  | 
| 11 | 
            -
             | 
|  | |
|  | |
|  | |
| 12 |  | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
|  | |
|  | |
| 16 |  | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
                     | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
                     | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
                     | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
                     | 
| 53 | 
            -
             | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
| 59 | 
            -
                
         | 
| 60 | 
            -
             | 
| 61 | 
            -
                csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'converted_signal.csv')
         | 
| 62 | 
            -
                df = pd.DataFrame(signal, columns=[' Sample Value'])
         | 
| 63 | 
            -
                df.to_csv(csv_path, index=False)
         | 
| 64 | 
            -
                
         | 
| 65 | 
            -
                return csv_path
         | 
| 66 |  | 
| 67 | 
            -
            def model_predict( | 
| 68 | 
            -
                 | 
| 69 | 
            -
                 | 
|  | |
| 70 | 
             
                    APC, NORMAL, LBB, PVC, PAB, RBB, VEB = [], [], [], [], [], [], []
         | 
| 71 | 
            -
                    output.append(str(path))
         | 
| 72 | 
             
                    result = {"APC": APC, "Normal": NORMAL, "LBB": LBB, "PAB": PAB, "PVC": PVC, "RBB": RBB, "VEB": VEB}
         | 
| 73 |  | 
| 74 | 
            -
                    kernel = np.ones((4,4), np.uint8)
         | 
| 75 | 
            -
                    csv = pd.read_csv( | 
| 76 | 
            -
                    csv_data = csv[ | 
| 77 | 
             
                    data = np.array(csv_data)
         | 
| 78 | 
             
                    signals = []
         | 
| 79 | 
             
                    count = 1
         | 
| @@ -97,49 +98,64 @@ def model_predict(uploaded_files, model): | |
| 97 | 
             
                                img[i, int(signal[i] / 10)] = 255
         | 
| 98 | 
             
                            img = cv2.dilate(img, kernel, iterations=1)
         | 
| 99 | 
             
                            img = img.reshape(128, 128, 1)
         | 
| 100 | 
            -
                            prediction = model.predict(np.array([img])).argmax()
         | 
| 101 | 
            -
                            classes = [ | 
| 102 | 
             
                            result[classes[prediction]].append(index)
         | 
| 103 |  | 
| 104 | 
            -
                    output.append(result)
         | 
| 105 | 
            -
             | 
| 106 | 
            -
                 | 
| 107 | 
            -
             | 
| 108 | 
            -
            @app.route('/', methods=['GET'])
         | 
| 109 | 
            -
            def index():
         | 
| 110 | 
            -
                return render_template('index.html')
         | 
| 111 |  | 
| 112 | 
            -
             | 
| 113 | 
            -
             | 
| 114 | 
            -
                 | 
| 115 | 
            -
                     | 
| 116 | 
            -
             | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 119 | 
            -
             | 
| 120 | 
            -
             | 
| 121 | 
            -
             | 
| 122 | 
            -
                         | 
| 123 | 
            -
             | 
|  | |
|  | |
|  | |
| 124 | 
             
                        file.save(file_path)
         | 
| 125 | 
            -
             | 
| 126 | 
            -
             | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
             | 
| 133 | 
            -
                         | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
                     | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 141 |  | 
| 142 | 
            -
            if __name__ ==  | 
| 143 | 
            -
                 | 
| 144 | 
            -
                    os.makedirs(UPLOAD_FOLDER)
         | 
| 145 | 
            -
                app.run(debug=True, host='0.0.0.0', port=5000)
         | 
|  | |
| 4 | 
             
            import pandas as pd
         | 
| 5 | 
             
            import tensorflow as tf
         | 
| 6 | 
             
            from tensorflow.keras.models import load_model
         | 
| 7 | 
            +
            import gradio as gr
         | 
|  | |
| 8 | 
             
            import biosppy.signals.ecg as ecg
         | 
| 9 | 
            +
            from PIL import Image
         | 
| 10 | 
            +
            import traceback
         | 
| 11 |  | 
| 12 | 
            +
            # Create uploads directory
         | 
| 13 | 
            +
            UPLOAD_FOLDER = "/tmp/uploads"
         | 
| 14 | 
            +
            if not os.path.exists(UPLOAD_FOLDER):
         | 
| 15 | 
            +
                os.makedirs(UPLOAD_FOLDER)
         | 
| 16 |  | 
| 17 | 
            +
            # Load the pre-trained model (assumes ecgScratchEpoch2.hdf5 is in the root directory)
         | 
| 18 | 
            +
            try:
         | 
| 19 | 
            +
                model = load_model("ecgScratchEpoch2.hdf5")
         | 
| 20 | 
            +
            except Exception as e:
         | 
| 21 | 
            +
                raise Exception(f"Failed to load model: {str(e)}")
         | 
| 22 |  | 
| 23 | 
            +
            def image_to_signal(image):
         | 
| 24 | 
            +
                """Convert an ECG image to a 1D signal and save as CSV."""
         | 
| 25 | 
            +
                try:
         | 
| 26 | 
            +
                    # Convert Gradio image (PIL) to OpenCV format
         | 
| 27 | 
            +
                    img = np.array(image)
         | 
| 28 | 
            +
                    img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
         | 
| 29 | 
            +
                    
         | 
| 30 | 
            +
                    # Resize to a standard size
         | 
| 31 | 
            +
                    img = cv2.resize(img, (1000, 500))
         | 
| 32 | 
            +
                    
         | 
| 33 | 
            +
                    # Apply thresholding to isolate waveform
         | 
| 34 | 
            +
                    _, binary = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY_INV)
         | 
| 35 | 
            +
                    
         | 
| 36 | 
            +
                    # Find contours
         | 
| 37 | 
            +
                    contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
         | 
| 38 | 
            +
                    if not contours:
         | 
| 39 | 
            +
                        raise ValueError("No waveform detected in the image")
         | 
| 40 | 
            +
                    
         | 
| 41 | 
            +
                    # Use the largest contour
         | 
| 42 | 
            +
                    contour = max(contours, key=cv2.contourArea)
         | 
| 43 | 
            +
                    
         | 
| 44 | 
            +
                    # Extract y-coordinates along x-axis
         | 
| 45 | 
            +
                    signal = []
         | 
| 46 | 
            +
                    width = img.shape[1]
         | 
| 47 | 
            +
                    for x in range(width):
         | 
| 48 | 
            +
                        column = contour[contour[:, :, 0] == x]
         | 
| 49 | 
            +
                        if len(column) > 0:
         | 
| 50 | 
            +
                            y = np.mean(column[:, :, 1])
         | 
| 51 | 
            +
                            signal.append(y)
         | 
| 52 | 
            +
                        else:
         | 
| 53 | 
            +
                            signal.append(signal[-1] if signal else 0)
         | 
| 54 | 
            +
                    
         | 
| 55 | 
            +
                    # Normalize signal
         | 
| 56 | 
            +
                    signal = np.array(signal)
         | 
| 57 | 
            +
                    signal = (signal - np.min(signal)) / (np.max(signal) - np.min(signal)) * 1000
         | 
| 58 | 
            +
                    
         | 
| 59 | 
            +
                    # Save to CSV
         | 
| 60 | 
            +
                    csv_path = os.path.join(UPLOAD_FOLDER, "converted_signal.csv")
         | 
| 61 | 
            +
                    df = pd.DataFrame(signal, columns=[" Sample Value"])
         | 
| 62 | 
            +
                    df.to_csv(csv_path, index=False)
         | 
| 63 | 
            +
                    
         | 
| 64 | 
            +
                    return csv_path
         | 
| 65 | 
            +
                except Exception as e:
         | 
| 66 | 
            +
                    raise Exception(f"Image processing error: {str(e)}")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 67 |  | 
| 68 | 
            +
            def model_predict(csv_path):
         | 
| 69 | 
            +
                """Predict ECG arrhythmia classes from a CSV file."""
         | 
| 70 | 
            +
                try:
         | 
| 71 | 
            +
                    output = []
         | 
| 72 | 
             
                    APC, NORMAL, LBB, PVC, PAB, RBB, VEB = [], [], [], [], [], [], []
         | 
|  | |
| 73 | 
             
                    result = {"APC": APC, "Normal": NORMAL, "LBB": LBB, "PAB": PAB, "PVC": PVC, "RBB": RBB, "VEB": VEB}
         | 
| 74 |  | 
| 75 | 
            +
                    kernel = np.ones((4, 4), np.uint8)
         | 
| 76 | 
            +
                    csv = pd.read_csv(csv_path)
         | 
| 77 | 
            +
                    csv_data = csv[" Sample Value"]
         | 
| 78 | 
             
                    data = np.array(csv_data)
         | 
| 79 | 
             
                    signals = []
         | 
| 80 | 
             
                    count = 1
         | 
|  | |
| 98 | 
             
                                img[i, int(signal[i] / 10)] = 255
         | 
| 99 | 
             
                            img = cv2.dilate(img, kernel, iterations=1)
         | 
| 100 | 
             
                            img = img.reshape(128, 128, 1)
         | 
| 101 | 
            +
                            prediction = model.predict(np.array([img]), verbose=0).argmax()
         | 
| 102 | 
            +
                            classes = ["Normal", "APC", "LBB", "PAB", "PVC", "RBB", "VEB"]
         | 
| 103 | 
             
                            result[classes[prediction]].append(index)
         | 
| 104 |  | 
| 105 | 
            +
                    output.append({"file": csv_path, "results": result})
         | 
| 106 | 
            +
                    return output
         | 
| 107 | 
            +
                except Exception as e:
         | 
| 108 | 
            +
                    raise Exception(f"Prediction error: {str(e)}")
         | 
|  | |
|  | |
|  | |
| 109 |  | 
| 110 | 
            +
            def classify_ecg(file):
         | 
| 111 | 
            +
                """Main function to handle file uploads (CSV or image)."""
         | 
| 112 | 
            +
                try:
         | 
| 113 | 
            +
                    if file is None:
         | 
| 114 | 
            +
                        return "No file uploaded."
         | 
| 115 | 
            +
                    
         | 
| 116 | 
            +
                    # Save uploaded file
         | 
| 117 | 
            +
                    file_path = os.path.join(UPLOAD_FOLDER, "uploaded_file")
         | 
| 118 | 
            +
                    if isinstance(file, str):  # CSV file path
         | 
| 119 | 
            +
                        file_path += ".csv"
         | 
| 120 | 
            +
                        with open(file_path, "wb") as f:
         | 
| 121 | 
            +
                            with open(file, "rb") as src:
         | 
| 122 | 
            +
                                f.write(src.read())
         | 
| 123 | 
            +
                    else:  # Image file (PIL Image from Gradio)
         | 
| 124 | 
            +
                        file_path += ".png"
         | 
| 125 | 
             
                        file.save(file_path)
         | 
| 126 | 
            +
                    
         | 
| 127 | 
            +
                    # Check file type
         | 
| 128 | 
            +
                    ext = file_path.rsplit(".", 1)[1].lower()
         | 
| 129 | 
            +
                    if ext in ["png", "jpg", "jpeg"]:
         | 
| 130 | 
            +
                        csv_path = image_to_signal(file)
         | 
| 131 | 
            +
                    elif ext == "csv":
         | 
| 132 | 
            +
                        csv_path = file_path
         | 
| 133 | 
            +
                    else:
         | 
| 134 | 
            +
                        return "Unsupported file type. Use CSV, PNG, or JPG."
         | 
| 135 | 
            +
                    
         | 
| 136 | 
            +
                    # Run prediction
         | 
| 137 | 
            +
                    results = model_predict(csv_path)
         | 
| 138 | 
            +
                    
         | 
| 139 | 
            +
                    # Format output
         | 
| 140 | 
            +
                    output = ""
         | 
| 141 | 
            +
                    for result in results:
         | 
| 142 | 
            +
                        output += f"File: {result['file']}\n"
         | 
| 143 | 
            +
                        for key, value in result["results"].items():
         | 
| 144 | 
            +
                            if value:
         | 
| 145 | 
            +
                                output += f"{key}: {value}\n"
         | 
| 146 | 
            +
                    
         | 
| 147 | 
            +
                    return output
         | 
| 148 | 
            +
                except Exception as e:
         | 
| 149 | 
            +
                    return f"Error: {str(e)}\n{traceback.format_exc()}"
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            # Gradio interface
         | 
| 152 | 
            +
            iface = gr.Interface(
         | 
| 153 | 
            +
                fn=classify_ecg,
         | 
| 154 | 
            +
                inputs=gr.File(label="Upload ECG Image (PNG/JPG) or CSV"),
         | 
| 155 | 
            +
                outputs=gr.Textbox(label="Classification Results"),
         | 
| 156 | 
            +
                title="ECG Arrhythmia Classification",
         | 
| 157 | 
            +
                description="Upload an ECG image (PNG/JPG) or CSV file to classify arrhythmias. Images will be converted to CSV before processing.",
         | 
| 158 | 
            +
            )
         | 
| 159 |  | 
| 160 | 
            +
            if __name__ == "__main__":
         | 
| 161 | 
            +
                iface.launch(server_name="0.0.0.0", server_port=7860)
         | 
|  | |
|  | 
