version updates (#1)
Browse files- version updates (cfb35e64155b756114fb1ebc8f6d8e5446356781)
Co-authored-by: Aksenov Andrei <[email protected]>
app.py
CHANGED
|
@@ -7,42 +7,45 @@ from threading import Thread
|
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer
|
| 8 |
from peft import PeftModel
|
| 9 |
|
| 10 |
-
# --- 1
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
YANDEX_FOLDER_ID = os.getenv("YANDEX_FOLDER_ID")
|
| 16 |
|
| 17 |
if not all([ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID]):
|
| 18 |
raise ValueError("Необходимо установить переменные окружения: ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID")
|
| 19 |
|
| 20 |
-
MAX_NEW_TOKENS
|
| 21 |
-
TEMPERATURE
|
| 22 |
-
TOP_P
|
| 23 |
-
REPETITION_PENALTY
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
"мәгълүmat җитәрлек булмаса, 1-2 кыска аныклаучы сорау бир. "
|
| 27 |
-
"Һәрвакыт татарча гына җавап бир."
|
| 28 |
)
|
| 29 |
|
| 30 |
print("Загрузка модели с 4-битной квантизацией...")
|
| 31 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
|
|
|
| 32 |
tok = AutoTokenizer.from_pretrained(ADAPTER_ID, use_fast=False)
|
| 33 |
if tok.pad_token is None:
|
| 34 |
tok.pad_token = tok.eos_token
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
print("Применяем LoRA адаптер...")
|
| 37 |
model = PeftModel.from_pretrained(base, ADAPTER_ID)
|
| 38 |
-
model.config.use_cache =
|
| 39 |
model.eval()
|
| 40 |
print("✅ Модель успешно загружена!")
|
| 41 |
|
| 42 |
-
# --- 2. Логика приложения (с изменениями для стриминга) ---
|
| 43 |
-
|
| 44 |
YANDEX_TRANSLATE_URL = "https://translate.api.cloud.yandex.net/translate/v2/translate"
|
| 45 |
-
YANDEX_DETECT_URL
|
| 46 |
|
| 47 |
def detect_language(text: str) -> str:
|
| 48 |
headers = {"Authorization": f"Api-Key {YANDEX_API_KEY}"}
|
|
@@ -50,10 +53,8 @@ def detect_language(text: str) -> str:
|
|
| 50 |
try:
|
| 51 |
resp = requests.post(YANDEX_DETECT_URL, headers=headers, json=payload, timeout=10)
|
| 52 |
resp.raise_for_status()
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
except requests.exceptions.RequestException as e:
|
| 56 |
-
print(f"Ошибка определения языка: {e}")
|
| 57 |
return "ru"
|
| 58 |
|
| 59 |
def ru2tt(text: str) -> str:
|
|
@@ -63,48 +64,27 @@ def ru2tt(text: str) -> str:
|
|
| 63 |
resp = requests.post(YANDEX_TRANSLATE_URL, headers=headers, json=payload, timeout=30)
|
| 64 |
resp.raise_for_status()
|
| 65 |
return resp.json()["translations"][0]["text"]
|
| 66 |
-
except requests.exceptions.RequestException
|
| 67 |
-
|
| 68 |
-
return f"Ошибка перевода: {text}"
|
| 69 |
|
| 70 |
def render_prompt(messages: List[Dict[str, str]]) -> str:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
if m["role"] == "system": sys_text += m["content"].strip() + "\n"
|
| 80 |
-
i = 0
|
| 81 |
-
while i < len(messages):
|
| 82 |
-
m = messages[i]
|
| 83 |
-
if m["role"] == "user":
|
| 84 |
-
next_assistant = None
|
| 85 |
-
if i + 1 < len(messages) and messages[i + 1]["role"] == "assistant":
|
| 86 |
-
next_assistant = messages[i + 1]["content"]
|
| 87 |
-
user_block = f"<<SYS>>\n{sys_text.strip()}\n<</SYS>>\n\n{m['content']}" if len(turns) == 0 and sys_text else m['content']
|
| 88 |
-
if next_assistant is None:
|
| 89 |
-
turns.append(f"<s>[INST] {user_block} [/INST]")
|
| 90 |
-
else:
|
| 91 |
-
turns.append(f"<s>[INST] {user_block} [/INST] {next_assistant}</s>")
|
| 92 |
-
i += 1
|
| 93 |
-
i += 1
|
| 94 |
-
return "".join(turns) if turns else (f"<s>[INST] <<SYS>>\n{sys_text.strip()}\n<</SYS>>\n\n [/INST]" if sys_text else "<s>[INST] [/INST]")
|
| 95 |
-
|
| 96 |
-
# ❗ ИЗМЕНЕННАЯ ФУНКЦИЯ ГЕНЕРАЦИИ
|
| 97 |
@torch.inference_mode()
|
| 98 |
def generate_tt_reply_stream(messages: List[Dict[str, str]]) -> Iterator[str]:
|
| 99 |
prompt = render_prompt(messages)
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# Создаем streamer
|
| 103 |
-
streamer = TextIteratorStreamer(tok, skip_prompt=True, skip_special_tokens=True)
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
streamer=streamer,
|
| 109 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 110 |
do_sample=True,
|
|
@@ -114,52 +94,60 @@ def generate_tt_reply_stream(messages: List[Dict[str, str]]) -> Iterator[str]:
|
|
| 114 |
eos_token_id=tok.eos_token_id,
|
| 115 |
pad_token_id=tok.pad_token_id,
|
| 116 |
)
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 120 |
thread.start()
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
# 2. Определяем язык и переводим, если нужно
|
| 140 |
-
detected_lang = detect_language(message)
|
| 141 |
-
user_tt = ru2tt(message) if detected_lang != "tt" else message
|
| 142 |
-
|
| 143 |
-
messages.append({"role": "user", "content": user_tt})
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
# 4. Стримим ответ модели и обновляем историю на лету
|
| 149 |
-
for partial_response in generate_tt_reply_stream(messages):
|
| 150 |
-
history[-1][1] = partial_response # Обновляем последнее сообщение в истории
|
| 151 |
-
yield history # Возвращаем всю историю на каждом шаге
|
| 152 |
|
| 153 |
-
# Создаем интерфейс
|
| 154 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 155 |
gr.Markdown("## Татарский чат-бот от команды Сбера")
|
|
|
|
|
|
|
|
|
|
| 156 |
chatbot = gr.Chatbot(label="Диалог", height=500, bubble_full_width=False)
|
| 157 |
-
msg = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
| 158 |
clear = gr.Button("🗑️ Чистарту")
|
| 159 |
|
| 160 |
-
msg.submit(
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
# Запуск приложения
|
| 164 |
if __name__ == "__main__":
|
| 165 |
-
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
|
|
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer
|
| 8 |
from peft import PeftModel
|
| 9 |
|
| 10 |
+
# --- 1) Конфигурация и загрузка модели ---
|
| 11 |
+
BASE_MODEL_ID = "Tweeties/tweety-7b-tatar-v24a"
|
| 12 |
+
ADAPTER_ID = os.getenv("ADAPTER_ID")
|
| 13 |
+
YANDEX_API_KEY = os.getenv("YANDEX_API_KEY")
|
| 14 |
+
YANDEX_FOLDER_ID= os.getenv("YANDEX_FOLDER_ID")
|
|
|
|
| 15 |
|
| 16 |
if not all([ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID]):
|
| 17 |
raise ValueError("Необходимо установить переменные окружения: ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID")
|
| 18 |
|
| 19 |
+
MAX_NEW_TOKENS = 256
|
| 20 |
+
TEMPERATURE = 0.7
|
| 21 |
+
TOP_P = 0.9
|
| 22 |
+
REPETITION_PENALTY = 1.05
|
| 23 |
+
|
| 24 |
+
SYS_PROMPT_TT = ("Син-цифрлы ярдәмче (ир-ат нәселе). Сине Сбербанк дирекциясенең ESG да уйлап таптылар. Син барлык өлкәләрдә дә кызыклы кулланучы эксперты! Ул сезгә бик күп сораулар бирәчәк, ә сезнең эшегез-шәрехләр бирү, кулланучының сорауларына җавап бирү, адымлап киңәшләр, мисаллар бирү һәм, кирәк булганда, кулланучыга аныклаучы сораулар бирү. Кулланучыга, фактлардан һәм саннардан качып, һәрвакыт кыска җавап бирергә кирәк"
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
print("Загрузка модели с 4-битной квантизацией...")
|
| 28 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
| 29 |
+
|
| 30 |
tok = AutoTokenizer.from_pretrained(ADAPTER_ID, use_fast=False)
|
| 31 |
if tok.pad_token is None:
|
| 32 |
tok.pad_token = tok.eos_token
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
base = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
BASE_MODEL_ID,
|
| 37 |
+
quantization_config=quantization_config,
|
| 38 |
+
device_map="auto"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
print("Применяем LoRA адаптер...")
|
| 42 |
model = PeftModel.from_pretrained(base, ADAPTER_ID)
|
| 43 |
+
model.config.use_cache = False
|
| 44 |
model.eval()
|
| 45 |
print("✅ Модель успешно загружена!")
|
| 46 |
|
|
|
|
|
|
|
| 47 |
YANDEX_TRANSLATE_URL = "https://translate.api.cloud.yandex.net/translate/v2/translate"
|
| 48 |
+
YANDEX_DETECT_URL = "https://translate.api.cloud.yandex.net/translate/v2/detect"
|
| 49 |
|
| 50 |
def detect_language(text: str) -> str:
|
| 51 |
headers = {"Authorization": f"Api-Key {YANDEX_API_KEY}"}
|
|
|
|
| 53 |
try:
|
| 54 |
resp = requests.post(YANDEX_DETECT_URL, headers=headers, json=payload, timeout=10)
|
| 55 |
resp.raise_for_status()
|
| 56 |
+
return resp.json().get("languageCode", "ru")
|
| 57 |
+
except requests.exceptions.RequestException:
|
|
|
|
|
|
|
| 58 |
return "ru"
|
| 59 |
|
| 60 |
def ru2tt(text: str) -> str:
|
|
|
|
| 64 |
resp = requests.post(YANDEX_TRANSLATE_URL, headers=headers, json=payload, timeout=30)
|
| 65 |
resp.raise_for_status()
|
| 66 |
return resp.json()["translations"][0]["text"]
|
| 67 |
+
except requests.exceptions.RequestException:
|
| 68 |
+
return text
|
|
|
|
| 69 |
|
| 70 |
def render_prompt(messages: List[Dict[str, str]]) -> str:
|
| 71 |
+
return tok.apply_chat_template(
|
| 72 |
+
messages,
|
| 73 |
+
tokenize=False,
|
| 74 |
+
add_generation_prompt=True
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# --- 4) Стриминговая генерация (без тримминга) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
@torch.inference_mode()
|
| 80 |
def generate_tt_reply_stream(messages: List[Dict[str, str]]) -> Iterator[str]:
|
| 81 |
prompt = render_prompt(messages)
|
| 82 |
+
enc = tok(prompt, return_tensors="pt")
|
| 83 |
+
enc = {k: v.to(model.device) for k, v in enc.items()}
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
streamer = TextIteratorStreamer(tok, skip_prompt=True, skip_special_tokens=True)
|
| 86 |
+
gen_kwargs = dict(
|
| 87 |
+
**enc,
|
| 88 |
streamer=streamer,
|
| 89 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 90 |
do_sample=True,
|
|
|
|
| 94 |
eos_token_id=tok.eos_token_id,
|
| 95 |
pad_token_id=tok.pad_token_id,
|
| 96 |
)
|
| 97 |
+
|
| 98 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
|
|
|
| 99 |
thread.start()
|
| 100 |
|
| 101 |
+
acc = ""
|
| 102 |
+
for chunk in streamer:
|
| 103 |
+
acc += chunk
|
| 104 |
+
yield acc
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def chat_fn(message: str, ui_history: list, messages_state: List[Dict[str, str]]):
|
| 109 |
+
if not messages_state or messages_state[0].get("role") != "system":
|
| 110 |
+
messages_state = [{"role": "system", "content": SYS_PROMPT_TT}]
|
| 111 |
+
|
| 112 |
+
detected = detect_language(message)
|
| 113 |
+
user_tt = ru2tt(message) if detected != "tt" else message
|
| 114 |
+
|
| 115 |
+
messages = messages_state + [{"role": "user", "content": user_tt}]
|
| 116 |
+
ui_history = ui_history + [[user_tt, ""]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
for partial in generate_tt_reply_stream(messages):
|
| 119 |
+
ui_history[-1][1] = partial
|
| 120 |
+
yield ui_history, messages_state + [
|
| 121 |
+
{"role": "user", "content": user_tt},
|
| 122 |
+
{"role": "assistant", "content": partial},
|
| 123 |
+
]
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
|
|
|
| 126 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 127 |
gr.Markdown("## Татарский чат-бот от команды Сбера")
|
| 128 |
+
|
| 129 |
+
messages_state = gr.State([{"role": "system", "content": SYS_PROMPT_TT}])
|
| 130 |
+
|
| 131 |
chatbot = gr.Chatbot(label="Диалог", height=500, bubble_full_width=False)
|
| 132 |
+
msg = gr.Textbox(
|
| 133 |
+
label="Хәбәрегезне рус яки татар телендә языгыз",
|
| 134 |
+
placeholder="Татарстанның башкаласы нинди шәһәр? / Какая столица Татарстана?"
|
| 135 |
+
)
|
| 136 |
clear = gr.Button("🗑️ Чистарту")
|
| 137 |
|
| 138 |
+
msg.submit(
|
| 139 |
+
chat_fn,
|
| 140 |
+
inputs=[msg, chatbot, messages_state],
|
| 141 |
+
outputs=[chatbot, messages_state],
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
msg.submit(lambda: "", None, msg)
|
| 145 |
+
|
| 146 |
+
def _reset():
|
| 147 |
+
return [], [{"role": "system", "content": SYS_PROMPT_TT}]
|
| 148 |
+
|
| 149 |
+
clear.click(_reset, inputs=None, outputs=[chatbot, messages_state], queue=False)
|
| 150 |
+
clear.click(lambda: "", None, msg, queue=False)
|
| 151 |
|
|
|
|
| 152 |
if __name__ == "__main__":
|
| 153 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|