Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import requests
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
from threading import Lock
|
| 7 |
+
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 9 |
+
from peft import PeftModel
|
| 10 |
+
|
| 11 |
+
# --- 1. Конфигурация и загрузка модели ---
|
| 12 |
+
|
| 13 |
+
# ID базовой модели
|
| 14 |
+
BASE_MODEL_ID = "Tweeties/tweety-7b-tatar-v24a"
|
| 15 |
+
|
| 16 |
+
# ID адаптера и ключи API загружаются из переменных окружения Render
|
| 17 |
+
ADAPTER_ID = os.getenv("ADAPTER_ID")
|
| 18 |
+
YANDEX_API_KEY = os.getenv("YANDEX_API_KEY")
|
| 19 |
+
YANDEX_FOLDER_ID = os.getenv("YANDEX_FOLDER_ID")
|
| 20 |
+
|
| 21 |
+
# Проверяем, что все переменные окружения установлены
|
| 22 |
+
if not all([ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID]):
|
| 23 |
+
raise ValueError("Необходимо установить переменные окружения: ADAPTER_ID, YANDEX_API_KEY, YANDEX_FOLDER_ID")
|
| 24 |
+
|
| 25 |
+
# Параметры генерации
|
| 26 |
+
MAX_NEW_TOKENS = 256
|
| 27 |
+
TEMPERATURE = 0.7
|
| 28 |
+
TOP_P = 0.9
|
| 29 |
+
REPETITION_PENALTY = 1.05
|
| 30 |
+
SYS_PROMPT_TT = (
|
| 31 |
+
"Син - татар цифрлы ярдәмчесе. Татар телендә һәрвакыт ачык һәм дустанә җавап бир."
|
| 32 |
+
"мәгълүмат җитәрлек булмаса, 1-2 кыска аныклаучы сорау бир. "
|
| 33 |
+
"Һәрвакыт татарча гына җавап бир."
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
print("Загрузка модели с 4-битной квантизацией...")
|
| 37 |
+
# Используем квантизацию для экономии оперативной памяти
|
| 38 |
+
quantization_config = BitsAndBytesConfig(
|
| 39 |
+
load_in_4bit=True,
|
| 40 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Загружаем токенизатор из приватного репозитория
|
| 44 |
+
# Библиотека transformers автоматически использует токен HF_TOKEN из переменных окружения
|
| 45 |
+
tok = AutoTokenizer.from_pretrained(ADAPTER_ID, use_fast=False)
|
| 46 |
+
if tok.pad_token is None:
|
| 47 |
+
tok.pad_token = tok.eos_token
|
| 48 |
+
|
| 49 |
+
base = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
BASE_MODEL_ID,
|
| 51 |
+
quantization_config=quantization_config,
|
| 52 |
+
device_map="auto",
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
print("Применяем LoRA адаптер...")
|
| 56 |
+
model = PeftModel.from_pretrained(base, ADAPTER_ID)
|
| 57 |
+
model.config.use_cache = True
|
| 58 |
+
model.eval()
|
| 59 |
+
print("✅ Модель успешно загружена!")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# --- 2. Логика приложения (функции перевода и генерации) ---
|
| 63 |
+
|
| 64 |
+
YANDEX_TRANSLATE_URL = "https://translate.api.cloud.yandex.net/translate/v2/translate"
|
| 65 |
+
generation_lock = Lock() # Для обработки одного запроса за раз
|
| 66 |
+
|
| 67 |
+
def _yandex_translate(texts: List[str], source: str, target: str) -> List[str]:
|
| 68 |
+
headers = {"Authorization": f"Api-Key {YANDEX_API_KEY}"}
|
| 69 |
+
payload = {
|
| 70 |
+
"folderId": YANDEX_FOLDER_ID,
|
| 71 |
+
"texts": texts,
|
| 72 |
+
"sourceLanguageCode": source,
|
| 73 |
+
"targetLanguageCode": target,
|
| 74 |
+
}
|
| 75 |
+
try:
|
| 76 |
+
resp = requests.post(YANDEX_TRANSLATE_URL, headers=headers, json=payload, timeout=30)
|
| 77 |
+
resp.raise_for_status()
|
| 78 |
+
data = resp.json()
|
| 79 |
+
return [item["text"] for item in data["translations"]]
|
| 80 |
+
except requests.exceptions.RequestException as e:
|
| 81 |
+
print(f"Ошибка перевода: {e}")
|
| 82 |
+
return [f"Ошибка перевода: {text}" for text in texts]
|
| 83 |
+
|
| 84 |
+
def ru2tt(text: str) -> str:
|
| 85 |
+
return _yandex_translate([text], "ru", "tt")[0]
|
| 86 |
+
|
| 87 |
+
def tt2ru(text: str) -> str:
|
| 88 |
+
return _yandex_translate([text], "tt", "ru")[0]
|
| 89 |
+
|
| 90 |
+
def render_prompt(messages: List[Dict[str, str]]) -> str:
|
| 91 |
+
# Ваша функция рендеринга промпта без изменений
|
| 92 |
+
if getattr(tok, "chat_template", None):
|
| 93 |
+
try:
|
| 94 |
+
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 95 |
+
except Exception:
|
| 96 |
+
pass
|
| 97 |
+
sys_text = ""
|
| 98 |
+
turns = []
|
| 99 |
+
for m in messages:
|
| 100 |
+
if m["role"] == "system":
|
| 101 |
+
sys_text += m["content"].strip() + "\n"
|
| 102 |
+
i = 0
|
| 103 |
+
while i < len(messages):
|
| 104 |
+
m = messages[i]
|
| 105 |
+
if m["role"] == "user":
|
| 106 |
+
next_assistant = None
|
| 107 |
+
if i + 1 < len(messages) and messages[i + 1]["role"] == "assistant":
|
| 108 |
+
next_assistant = messages[i + 1]["content"]
|
| 109 |
+
if len(turns) == 0 and sys_text:
|
| 110 |
+
user_block = f"<<SYS>>\n{sys_text.strip()}\n<</SYS>>\n\n{m['content']}"
|
| 111 |
+
else:
|
| 112 |
+
user_block = m["content"]
|
| 113 |
+
if next_assistant is None:
|
| 114 |
+
turns.append(f"<s>[INST] {user_block} [/INST]")
|
| 115 |
+
else:
|
| 116 |
+
turns.append(f"<s>[INST] {user_block} [/INST] {next_assistant}</s>")
|
| 117 |
+
i += 1
|
| 118 |
+
i += 1
|
| 119 |
+
if not turns:
|
| 120 |
+
return f"<s>[INST] <<SYS>>\n{sys_text.strip()}\n<</SYS>>\n\n [/INST]" if sys_text else "<s>[INST] [/INST]"
|
| 121 |
+
return "".join(turns)
|
| 122 |
+
|
| 123 |
+
@torch.inference_mode()
|
| 124 |
+
def generate_tt_reply(messages: List[Dict[str, str]]) -> str:
|
| 125 |
+
with generation_lock:
|
| 126 |
+
prompt = render_prompt(messages)
|
| 127 |
+
inputs = tok(prompt, return_tensors="pt").to(model.device)
|
| 128 |
+
out = model.generate(
|
| 129 |
+
**inputs,
|
| 130 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 131 |
+
do_sample=True,
|
| 132 |
+
temperature=TEMPERATURE,
|
| 133 |
+
top_p=TOP_P,
|
| 134 |
+
repetition_penalty=REPETITION_PENALTY,
|
| 135 |
+
eos_token_id=tok.eos_token_id,
|
| 136 |
+
pad_token_id=tok.pad_token_id,
|
| 137 |
+
)
|
| 138 |
+
gen_text = tok.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
| 139 |
+
return gen_text.strip()
|
| 140 |
+
|
| 141 |
+
# --- 3. Gradio интерфейс ---
|
| 142 |
+
|
| 143 |
+
def chat_fn(message, history):
|
| 144 |
+
messages = [{"role": "system", "content": SYS_PROMPT_TT}]
|
| 145 |
+
for user_msg, bot_msg in history:
|
| 146 |
+
messages.append({"role": "user", "content": ru2tt(user_msg)})
|
| 147 |
+
messages.append({"role": "assistant", "content": ru2tt(bot_msg)})
|
| 148 |
+
|
| 149 |
+
user_tt = ru2tt(message)
|
| 150 |
+
messages.append({"role": "user", "content": user_tt})
|
| 151 |
+
|
| 152 |
+
tt_reply = generate_tt_reply(messages)
|
| 153 |
+
ru_reply = tt2ru(tt_reply)
|
| 154 |
+
|
| 155 |
+
return ru_reply
|
| 156 |
+
|
| 157 |
+
# Создаем и запускаем интерфейс
|
| 158 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 159 |
+
gr.Markdown("## Татарский Чат-Бот на базе Tweety-7B")
|
| 160 |
+
chatbot = gr.Chatbot(label="Диалог", height=500)
|
| 161 |
+
msg = gr.Textbox(label="Ваше сообщение (на русском)", placeholder="Как дела?")
|
| 162 |
+
clear = gr.Button("🗑️ Очистить")
|
| 163 |
+
|
| 164 |
+
msg.submit(chat_fn, [msg, chatbot], chatbot)
|
| 165 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 166 |
+
|
| 167 |
+
# server_name="0.0.0.0" и server_port=int(os.getenv("PORT", 7860)) важны для Render
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|