Spaces:
Paused
Paused
File size: 818 Bytes
38dbe5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
import torch
import numpy as np
import nibabel as nib
from model import My3DModel
model = My3DModel()
model.load_state_dict(torch.load("model.pt", map_location="cpu"))
model.eval()
def predict_from_mri(file_obj):
img = nib.load(file_obj.name)
data = img.get_fdata().astype(np.float32)
data = np.expand_dims(data, axis=0) # (1, D, H, W)
tensor = torch.tensor(data).unsqueeze(0) # (1, 1, D, H, W)
with torch.no_grad():
output = model(tensor)
pred_class = torch.argmax(output, dim=1).item()
return ["CN", "MCI", "AD"][pred_class]
iface = gr.Interface(fn=predict_from_mri,
inputs=gr.File(label="MRI .nii dosyası"),
outputs="text",
title="3D MRI Alzheimer Teşhis Modeli")
iface.launch()
|