SubGen / app.py
Nick021402's picture
Rename App.py to app.py
6ef73b2 verified
# app.py - Main Gradio application
import gradio as gr
import whisper
import torch
from transformers import MarianMTModel, MarianTokenizer
import yt_dlp
import os
import tempfile
import subprocess
from pathlib import Path
import re
class SubtitleTranslator:
def __init__(self):
# Use the smallest Whisper model for speed
self.whisper_model = whisper.load_model("tiny")
# Translation model cache
self.translation_models = {}
self.tokenizers = {}
def download_youtube_audio(self, url):
"""Download audio from YouTube video"""
try:
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'temp_audio.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Find the downloaded file
for file in os.listdir('.'):
if file.startswith('temp_audio') and file.endswith('.mp3'):
return file
return None
except Exception as e:
return None
def extract_audio_from_video(self, video_path):
"""Extract audio from uploaded video file"""
try:
audio_path = "temp_extracted_audio.wav"
cmd = [
'ffmpeg', '-i', video_path,
'-acodec', 'pcm_s16le',
'-ac', '1',
'-ar', '16000',
audio_path, '-y'
]
subprocess.run(cmd, check=True, capture_output=True)
return audio_path
except Exception as e:
return None
def transcribe_audio(self, audio_path):
"""Transcribe audio using Whisper"""
result = self.whisper_model.transcribe(audio_path)
return result
def get_translation_model(self, source_lang, target_lang="en"):
"""Load translation model for language pair"""
model_name = f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
try:
if model_name not in self.translation_models:
self.tokenizers[model_name] = MarianTokenizer.from_pretrained(model_name)
self.translation_models[model_name] = MarianMTModel.from_pretrained(model_name)
return self.translation_models[model_name], self.tokenizers[model_name]
except:
# Fallback to multilingual model
fallback_model = "Helsinki-NLP/opus-mt-mul-en"
if fallback_model not in self.translation_models:
self.tokenizers[fallback_model] = MarianTokenizer.from_pretrained(fallback_model)
self.translation_models[fallback_model] = MarianMTModel.from_pretrained(fallback_model)
return self.translation_models[fallback_model], self.tokenizers[fallback_model]
def translate_text(self, text, source_lang, target_lang="en"):
"""Translate text using MarianMT"""
if source_lang == target_lang:
return text
try:
model, tokenizer = self.get_translation_model(source_lang, target_lang)
inputs = tokenizer.encode(text, return_tensors="pt", truncation=True, max_length=512)
translated = model.generate(inputs, max_length=512, num_beams=4, early_stopping=True)
return tokenizer.decode(translated[0], skip_special_tokens=True)
except:
return text # Return original if translation fails
def format_timestamp(self, seconds):
"""Convert seconds to SRT timestamp format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millisecs = int((seconds % 1) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millisecs:03d}"
def create_srt(self, segments, source_lang):
"""Create SRT subtitle content"""
srt_content = ""
for i, segment in enumerate(segments, 1):
start_time = self.format_timestamp(segment['start'])
end_time = self.format_timestamp(segment['end'])
original_text = segment['text'].strip()
translated_text = self.translate_text(original_text, source_lang, "en")
srt_content += f"{i}\n"
srt_content += f"{start_time} --> {end_time}\n"
srt_content += f"{translated_text}\n\n"
return srt_content
def process_video(self, video_input, youtube_url):
"""Main processing function"""
try:
# Determine input source
if youtube_url and youtube_url.strip():
audio_path = self.download_youtube_audio(youtube_url.strip())
if not audio_path:
return "Error: Could not download YouTube video", None
elif video_input:
audio_path = self.extract_audio_from_video(video_input)
if not audio_path:
return "Error: Could not extract audio from video", None
else:
return "Please provide either a video file or YouTube URL", None
# Transcribe audio
result = self.transcribe_audio(audio_path)
# Detect language
detected_lang = result.get('language', 'unknown')
# Language code mapping for translation models
lang_mapping = {
'spanish': 'es', 'french': 'fr', 'german': 'de', 'italian': 'it',
'portuguese': 'pt', 'russian': 'ru', 'chinese': 'zh', 'japanese': 'ja',
'korean': 'ko', 'arabic': 'ar', 'hindi': 'hi', 'dutch': 'nl',
'swedish': 'sv', 'norwegian': 'no', 'danish': 'da', 'finnish': 'fi'
}
source_lang_code = lang_mapping.get(detected_lang, detected_lang)
# Create SRT content
srt_content = self.create_srt(result['segments'], source_lang_code)
# Save SRT file
srt_filename = "translated_subtitles.srt"
with open(srt_filename, 'w', encoding='utf-8') as f:
f.write(srt_content)
# Clean up temporary files
if os.path.exists(audio_path):
os.remove(audio_path)
status_msg = f"βœ… Processing complete!\n"
status_msg += f"πŸ” Detected language: {detected_lang}\n"
status_msg += f"πŸ“ Generated {len(result['segments'])} subtitle segments\n"
status_msg += f"🌍 Translated to English"
return status_msg, srt_filename
except Exception as e:
return f"Error during processing: {str(e)}", None
# Initialize the translator
translator = SubtitleTranslator()
# Create Gradio interface
def process_video_interface(video_file, youtube_url, progress=gr.Progress()):
progress(0.1, desc="Starting processing...")
progress(0.3, desc="Extracting audio...")
result = translator.process_video(video_file, youtube_url)
progress(0.7, desc="Transcribing and translating...")
progress(1.0, desc="Complete!")
return result
# Custom CSS for better UI
css = """
.gradio-container {
max-width: 900px !important;
}
.title {
text-align: center;
color: #2563eb;
font-size: 2.5rem;
font-weight: bold;
margin-bottom: 1rem;
}
.subtitle {
text-align: center;
color: #64748b;
font-size: 1.2rem;
margin-bottom: 2rem;
}
.feature-box {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 1rem;
border-radius: 10px;
margin: 1rem 0;
}
"""
# Create the Gradio app
with gr.Blocks(css=css, title="Video Subtitle Translator") as app:
gr.HTML("""
<div class="title">🎬 Video Subtitle Translator</div>
<div class="subtitle">Generate English subtitles from any language video using AI</div>
""")
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="feature-box">
<h3>πŸš€ Features:</h3>
<ul>
<li>πŸ“Ή Upload video files or paste YouTube links</li>
<li>🎯 Automatic speech recognition with Whisper AI</li>
<li>🌍 Auto-detect source language</li>
<li>πŸ“ Generate accurate English subtitles</li>
<li>⏱️ Perfect timing synchronization</li>
<li>πŸ’Ύ Download ready-to-use SRT files</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.File(
label="πŸ“ Upload Video File",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm", ".m4v"],
type="filepath"
)
youtube_input = gr.Textbox(
label="πŸ”— Or paste YouTube URL",
placeholder="https://www.youtube.com/watch?v=...",
lines=1
)
process_btn = gr.Button(
"πŸš€ Generate Subtitles",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
status_output = gr.Textbox(
label="πŸ“Š Processing Status",
lines=6,
interactive=False
)
srt_output = gr.File(
label="πŸ’Ύ Download SRT File",
interactive=False
)
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; color: #64748b;">
<p>⚑ Powered by Whisper AI & MarianMT | πŸ€— Running on Hugging Face Spaces</p>
<p>πŸ’‘ Tip: For best results, use videos with clear audio and minimal background noise</p>
</div>
""")
# Connect the processing function
process_btn.click(
fn=process_video_interface,
inputs=[video_input, youtube_input],
outputs=[status_output, srt_output],
show_progress=True
)
if __name__ == "__main__":
app.launch()