File size: 6,608 Bytes
5e9bfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""

Retrieval and FAISS Embedding Module for Medical QA Chatbot

============================================================



This module handles:

1. Embedding documents

2. Building and saving FAISS index

3. Retrieval with initial FAISS search + reranking using BioBERT similarity

"""

import faiss
import pandas as pd
import numpy as np
import torch
from sentence_transformers import SentenceTransformer, util
from sklearn.preprocessing import normalize
from Query_processing import preprocess_query
import os

# -------------------------------
# File Paths
# -------------------------------

# Get the project root directory (one level up from script_dir)
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

# Absolute paths for dataset and index files
csv_path = os.path.join(project_root, 'Datasets', 'flattened_drug_dataset_cleaned.csv')
faiss_index_path = os.path.join(project_root, 'Vectors', 'faiss_index.idx')
doc_metadata_path = os.path.join(project_root, 'Vectors', 'doc_metadata.pkl')
doc_vectors_path = os.path.join(project_root, 'Vectors', 'doc_vectors.npy')

# Load the dataset
df = pd.read_csv(csv_path).dropna(subset=['chunk_text'])

# -------------------------------
# Model Initialization
# -------------------------------

fast_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
biobert = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb')

# -------------------------------
# Function: Embed and Build FAISS Index
# -------------------------------

def Embed_and_FAISS():
    """

    Embeds the drug dataset and builds a FAISS index for fast retrieval.

    Saves the index, metadata, and document vectors to disk.

    """
    print("Embedding document chunks using fast embedder...")

    # Build full context strings
    df['full_text'] = df.apply(lambda x: f"{x['drug_name']} | {x['section']} > {x['subsection']} | {x['chunk_text']}", axis=1)

    full_texts = df['full_text'].tolist()
    doc_embeddings = fast_embedder.encode(full_texts, convert_to_numpy=True, show_progress_bar=True)

    # Normalize embeddings and build index
    doc_embeddings = normalize(doc_embeddings, axis=1, norm='l2')
    dimension = doc_embeddings.shape[1]
    index = faiss.IndexFlatIP(dimension)
    index.add(doc_embeddings)

    # Save index and metadata
    faiss.write_index(index, faiss_index_path)
    df.to_pickle(doc_metadata_path)
    np.save(doc_vectors_path, doc_embeddings)

    print("FAISS index built and saved successfully.")

# -------------------------------
# Function: Retrieve with Context and Averaged Embeddings
# -------------------------------

def retrieve_with_context_averagedembeddings(query, top_k=10, predicted_intent=None, detected_entities=None, alpha=0.8):
    """

    Retrieve top chunks using FAISS followed by reranking with BioBERT similarity.



    Parameters:

        query (str): User query text.

        top_k (int): Number of top results to retrieve.

        predicted_intent (str, optional): Detected intent to adjust retrieval.

        detected_entities (list, optional): List of named entities.

        alpha (float): Weight for combining query and intent embeddings.



    Returns:

        pd.DataFrame: Retrieved chunks with metadata and reranked scores.

    """
    print(f"[Retrieval Pipeline Started] Query: {query}")

    # Embed and normalize the query
    query_vec = fast_embedder.encode([query], convert_to_numpy=True)

    if predicted_intent:
        intent_vec = fast_embedder.encode([predicted_intent], convert_to_numpy=True)
        query_vec = normalize((alpha * query_vec + (1 - alpha) * intent_vec), axis=1)

    # Load FAISS index and search
    index = faiss.read_index(faiss_index_path)
    D, I = index.search(query_vec, top_k)

    df_meta = pd.read_pickle(doc_metadata_path)
    retrieved_df = df_meta.loc[I[0]].copy()
    retrieved_df['faiss_score'] = D[0]

    # BioBERT reranking
    query_emb = biobert.encode(query, convert_to_tensor=True)
    chunk_embs = biobert.encode(retrieved_df['full_text'].tolist(), convert_to_tensor=True)
    cos_scores = util.pytorch_cos_sim(query_emb, chunk_embs)[0]
    reranked_idx = torch.argsort(cos_scores, descending=True)

    # Boost scores based on intent, subsection match, or entity presence
    results = []
    for idx in reranked_idx:
        idx = int(idx)
        row = retrieved_df.iloc[idx]
        score = cos_scores[idx].item()

        section = row['section'][0] if isinstance(row['section'], tuple) else row['section']
        subsection = row['subsection'][0] if isinstance(row['subsection'], tuple) else row['subsection']
        if isinstance(predicted_intent, tuple):
            predicted_intent = predicted_intent[0]

        if predicted_intent and section.strip().lower() == predicted_intent.strip().lower():
            score += 0.05
        if predicted_intent and predicted_intent.lower() in subsection.strip().lower():
            score += 0.03
        if detected_entities:
            if any(ent.lower() in row['chunk_text'].lower() for ent in detected_entities):
                score += 0.1

        results.append({
            'chunk_id': row['chunk_id'],
            'drug_name': row['drug_name'],
            'section': row['section'],
            'subsection': row['subsection'],
            'chunk_text': row['chunk_text'],
            'faiss_score': row['faiss_score'],
            'semantic_similarity_score': score
        })

    return pd.DataFrame(results)

# -------------------------------
# Function: Retrieval Wrapper
# -------------------------------

def Retrieval_averagedQP(raw_query, intent, entities, top_k=10, alpha=0.8):
    """

    Wrapper to retrieve top-k chunks given a raw user query.



    Parameters:

        raw_query (str): The user query.

        intent (str): Predicted intent from query processing.

        entities (list): Detected biomedical entities.

        top_k (int): Number of top results to return.

        alpha (float): Weighting between query and intent embeddings.



    Returns:

        pd.DataFrame: Top retrieved chunks with scores.

    """
    results_df = retrieve_with_context_averagedembeddings(
        raw_query,
        top_k=top_k,
        predicted_intent=intent,
        detected_entities=entities,
        alpha=alpha
    )
    return results_df[['chunk_id', 'drug_name', 'section', 'subsection', 'chunk_text', 'faiss_score', 'semantic_similarity_score']]