# app.py import gradio as gr from PIL import Image import pytesseract import sympy def solve_math_problem(image): try: # Convert image to grayscale for better OCR performance image = image.convert("L") # Preprocess the image (optional enhancements can be added here) # For example, image = image.point(lambda x: 0 if x < 140 else 255, '1') # Use pytesseract to extract text from the image problem_text = pytesseract.image_to_string(image, config='--psm 7') # Clean and prepare the extracted text problem_text = problem_text.strip().replace('\n', '').replace(' ', '') # Use sympy to parse and solve the equation # Handle simple arithmetic and algebraic equations expr = sympy.sympify(problem_text) solution = sympy.solve(expr) # Format the solution for display if isinstance(solution, list): solution = ', '.join([str(s) for s in solution]) else: solution = str(solution) return f"**Problem:** {problem_text}\n\n**Solution:** {solution}" except Exception as e: return f"**Error processing image:** {str(e)}" # Create the Gradio interface demo = gr.Interface( fn=solve_math_problem, inputs=gr.Image( type="pil", label="Upload Handwritten Math Problem", image_mode="L" # Grayscale mode improves OCR accuracy ), outputs=gr.Markdown(), title="Handwritten Math Problem Solver", description="Upload an image of a handwritten math problem, and the app will attempt to solve it.", examples=[ ["example_addition.png"], ["example_algebra.jpg"] ], allow_flagging="never", webpage_title="Handwritten Math Solver", theme="soft" ) if __name__ == "__main__": demo.launch()