File size: 12,787 Bytes
9d3cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .utils.attention import Attention, JointAttention
from .utils.modules import unpatchify, FeedForward
from .utils.modules import film_modulate


class AdaLN(nn.Module):
    def __init__(self, dim, ada_mode='ada', r=None, alpha=None):
        super().__init__()
        self.ada_mode = ada_mode
        self.scale_shift_table = None
        if ada_mode == 'ada':
            # move nn.silu outside
            self.time_ada = nn.Linear(dim, 6 * dim, bias=True)
        elif ada_mode == 'ada_single':
            # adaln used in pixel-art alpha
            self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
        elif ada_mode in ['ada_lora', 'ada_lora_bias']:
            self.lora_a = nn.Linear(dim, r * 6, bias=False)
            self.lora_b = nn.Linear(r * 6, dim * 6, bias=False)
            self.scaling = alpha / r
            if ada_mode == 'ada_lora_bias':
                # take bias out for consistency
                self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
        else:
            raise NotImplementedError

    def forward(self, time_token=None, time_ada=None):
        if self.ada_mode == 'ada':
            assert time_ada is None
            B = time_token.shape[0]
            time_ada = self.time_ada(time_token).reshape(B, 6, -1)
        elif self.ada_mode == 'ada_single':
            B = time_ada.shape[0]
            time_ada = time_ada.reshape(B, 6, -1)
            time_ada = self.scale_shift_table[None] + time_ada
        elif self.ada_mode in ['ada_lora', 'ada_lora_bias']:
            B = time_ada.shape[0]
            time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling
            time_ada = time_ada + time_ada_lora
            time_ada = time_ada.reshape(B, 6, -1)
            if self.scale_shift_table is not None:
                time_ada = self.scale_shift_table[None] + time_ada
        else:
            raise NotImplementedError
        return time_ada


class DiTBlock(nn.Module):
    """
    A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
    """

    def __init__(self, dim, context_dim=None,
                 num_heads=8, mlp_ratio=4.,
                 qkv_bias=False, qk_scale=None, qk_norm=None,
                 act_layer='gelu', norm_layer=nn.LayerNorm,
                 time_fusion='none',
                 ada_lora_rank=None, ada_lora_alpha=None,
                 skip=False, skip_norm=False,
                 rope_mode='none',
                 context_norm=False,
                 use_checkpoint=False):

        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim=dim,
                              num_heads=num_heads,
                              qkv_bias=qkv_bias, qk_scale=qk_scale,
                              qk_norm=qk_norm,
                              rope_mode=rope_mode)

        if context_dim is not None:
            self.use_context = True
            self.cross_attn = Attention(dim=dim,
                                        num_heads=num_heads,
                                        context_dim=context_dim,
                                        qkv_bias=qkv_bias, qk_scale=qk_scale,
                                        qk_norm=qk_norm,
                                        rope_mode='none')
            self.norm2 = norm_layer(dim)
            if context_norm:
                self.norm_context = norm_layer(context_dim)
            else:
                self.norm_context = nn.Identity()
        else:
            self.use_context = False

        self.norm3 = norm_layer(dim)
        self.mlp = FeedForward(dim=dim, mult=mlp_ratio,
                               activation_fn=act_layer, dropout=0)

        self.use_adanorm = True if time_fusion != 'token' else False
        if self.use_adanorm:
            self.adaln = AdaLN(dim, ada_mode=time_fusion,
                               r=ada_lora_rank, alpha=ada_lora_alpha)
        if skip:
            self.skip_norm = norm_layer(2 * dim) if skip_norm else nn.Identity()
            self.skip_linear = nn.Linear(2 * dim, dim)
        else:
            self.skip_linear = None
            
        self.use_checkpoint = use_checkpoint

    def forward(self, x, time_token=None, time_ada=None,
                skip=None, context=None,
                x_mask=None, context_mask=None, extras=None):
        if self.use_checkpoint:
            return checkpoint(self._forward, x,
                              time_token, time_ada, skip, context,
                              x_mask, context_mask, extras,
                              use_reentrant=False)
        else:
            return self._forward(x,
                                 time_token, time_ada, skip, context,
                                 x_mask, context_mask, extras)

    def _forward(self, x, time_token=None, time_ada=None,
                 skip=None, context=None,
                 x_mask=None, context_mask=None, extras=None):
        B, T, C = x.shape
        if self.skip_linear is not None:
            assert skip is not None
            cat = torch.cat([x, skip], dim=-1)
            cat = self.skip_norm(cat)
            x = self.skip_linear(cat)

        if self.use_adanorm:
            time_ada = self.adaln(time_token, time_ada)
            (shift_msa, scale_msa, gate_msa,
             shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1)

        # self attention
        if self.use_adanorm:
            x_norm = film_modulate(self.norm1(x), shift=shift_msa,
                                   scale=scale_msa)
            x = x + (1 - gate_msa) * self.attn(x_norm, context=None,
                                               context_mask=x_mask,
                                               extras=extras)
        else:
            x = x + self.attn(self.norm1(x), context=None, context_mask=x_mask,
                              extras=extras)

        # cross attention
        if self.use_context:
            assert context is not None
            x = x + self.cross_attn(x=self.norm2(x),
                                    context=self.norm_context(context),
                                    context_mask=context_mask, extras=extras)

        # mlp
        if self.use_adanorm:
            x_norm = film_modulate(self.norm3(x), shift=shift_mlp, scale=scale_mlp)
            x = x + (1 - gate_mlp) * self.mlp(x_norm)
        else:
            x = x + self.mlp(self.norm3(x))

        return x


class JointDiTBlock(nn.Module):
    """
    A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
    """

    def __init__(self, dim, context_dim=None,
                 num_heads=8, mlp_ratio=4.,
                 qkv_bias=False, qk_scale=None, qk_norm=None,
                 act_layer='gelu', norm_layer=nn.LayerNorm,
                 time_fusion='none',
                 ada_lora_rank=None, ada_lora_alpha=None,
                 skip=(False, False),
                 rope_mode=False,
                 context_norm=False,
                 use_checkpoint=False,):

        super().__init__()
        # no cross attention
        assert context_dim is None
        self.attn_norm_x = norm_layer(dim)
        self.attn_norm_c = norm_layer(dim)
        self.attn = JointAttention(dim=dim,
                                   num_heads=num_heads,
                                   qkv_bias=qkv_bias, qk_scale=qk_scale,
                                   qk_norm=qk_norm,
                                   rope_mode=rope_mode)
        self.ffn_norm_x = norm_layer(dim)
        self.ffn_norm_c = norm_layer(dim)
        self.mlp_x = FeedForward(dim=dim, mult=mlp_ratio,
                                 activation_fn=act_layer, dropout=0)
        self.mlp_c = FeedForward(dim=dim, mult=mlp_ratio,
                                 activation_fn=act_layer, dropout=0)

        # Zero-out the shift table
        self.use_adanorm = True if time_fusion != 'token' else False
        if self.use_adanorm:
            self.adaln = AdaLN(dim, ada_mode=time_fusion,
                               r=ada_lora_rank, alpha=ada_lora_alpha)

        if skip is False:
            skip_x, skip_c = False, False
        else:
            skip_x, skip_c = skip

        self.skip_linear_x = nn.Linear(2 * dim, dim) if skip_x else None
        self.skip_linear_c = nn.Linear(2 * dim, dim) if skip_c else None

        self.use_checkpoint = use_checkpoint

    def forward(self, x, time_token=None, time_ada=None,
                skip=None, context=None,
                x_mask=None, context_mask=None, extras=None):
        if self.use_checkpoint:
            return checkpoint(self._forward, x,
                              time_token, time_ada, skip,
                              context, x_mask, context_mask, extras,
                              use_reentrant=False)
        else:
            return self._forward(x,
                                 time_token, time_ada, skip,
                                 context, x_mask, context_mask, extras)

    def _forward(self, x, time_token=None, time_ada=None,
                 skip=None, context=None,
                 x_mask=None, context_mask=None, extras=None):

        assert context is None and context_mask is None

        context, x = x[:, :extras, :], x[:, extras:, :]
        context_mask, x_mask = x_mask[:, :extras], x_mask[:, extras:]

        if skip is not None:
            skip_c, skip_x = skip[:, :extras, :], skip[:, extras:, :]

        B, T, C = x.shape
        if self.skip_linear_x is not None:
            x = self.skip_linear_x(torch.cat([x, skip_x], dim=-1))

        if self.skip_linear_c is not None:
            context = self.skip_linear_c(torch.cat([context, skip_c], dim=-1))

        if self.use_adanorm:
            time_ada = self.adaln(time_token, time_ada)
            (shift_msa, scale_msa, gate_msa,
             shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1)

        # self attention
        x_norm = self.attn_norm_x(x)
        c_norm = self.attn_norm_c(context)
        if self.use_adanorm:
            x_norm = film_modulate(x_norm, shift=shift_msa, scale=scale_msa)
        x_out, c_out = self.attn(x_norm, context=c_norm,
                                 x_mask=x_mask, context_mask=context_mask,
                                 extras=extras)
        if self.use_adanorm:
            x = x + (1 - gate_msa) * x_out
        else:
            x = x + x_out
        context = context + c_out

        # mlp
        if self.use_adanorm:
            x_norm = film_modulate(self.ffn_norm_x(x),
                                   shift=shift_mlp, scale=scale_mlp)
            x = x + (1 - gate_mlp) * self.mlp_x(x_norm)
        else:
            x = x + self.mlp_x(self.ffn_norm_x(x))

        c_norm = self.ffn_norm_c(context)
        context = context + self.mlp_c(c_norm)

        return torch.cat((context, x), dim=1)


class FinalBlock(nn.Module):
    def __init__(self, embed_dim, patch_size, in_chans,
                 img_size,
                 input_type='2d',
                 norm_layer=nn.LayerNorm,
                 use_conv=True,
                 use_adanorm=True):
        super().__init__()
        self.in_chans = in_chans
        self.img_size = img_size
        self.input_type = input_type

        self.norm = norm_layer(embed_dim)
        if use_adanorm:
            self.use_adanorm = True
        else:
            self.use_adanorm = False

        if input_type == '2d':
            self.patch_dim = patch_size ** 2 * in_chans
            self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
            if use_conv:
                self.final_layer = nn.Conv2d(self.in_chans, self.in_chans, 
                                             3, padding=1)
            else:
                self.final_layer = nn.Identity()

        elif input_type == '1d':
            self.patch_dim = patch_size * in_chans
            self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
            if use_conv:
                self.final_layer = nn.Conv1d(self.in_chans, self.in_chans, 
                                             3, padding=1)
            else:
                self.final_layer = nn.Identity()

    def forward(self, x, time_ada=None, extras=0):
        B, T, C = x.shape
        x = x[:, extras:, :]
        # only handle generation target
        if self.use_adanorm:
            shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1)
            x = film_modulate(self.norm(x), shift, scale)
        else:
            x = self.norm(x)
        x = self.linear(x)
        x = unpatchify(x, self.in_chans, self.input_type, self.img_size)
        x = self.final_layer(x)
        return x