import os import random import pandas as pd import torch import librosa import numpy as np import soundfile as sf from tqdm import tqdm from .utils import scale_shift_re def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg @torch.no_grad() def inference(autoencoder, unet, controlnet, gt, gt_mask, condition, tokenizer, text_encoder, params, noise_scheduler, text_raw, neg_text=None, audio_frames=500, guidance_scale=3, guidance_rescale=0.0, ddim_steps=50, eta=1, random_seed=2024, conditioning_scale=1.0, device='cuda', ): if neg_text is None: neg_text = [""] if tokenizer is not None: text_batch = tokenizer(text_raw, max_length=params['text_encoder']['max_length'], padding="max_length", truncation=True, return_tensors="pt") text, text_mask = text_batch.input_ids.to(device), text_batch.attention_mask.to(device).bool() text = text_encoder(input_ids=text, attention_mask=text_mask).last_hidden_state uncond_text_batch = tokenizer(neg_text, max_length=params['text_encoder']['max_length'], padding="max_length", truncation=True, return_tensors="pt") uncond_text, uncond_text_mask = uncond_text_batch.input_ids.to(device), uncond_text_batch.attention_mask.to(device).bool() uncond_text = text_encoder(input_ids=uncond_text, attention_mask=uncond_text_mask).last_hidden_state else: text, text_mask = None, None guidance_scale = None codec_dim = params['model']['out_chans'] unet.eval() controlnet.eval() if random_seed is not None: generator = torch.Generator(device=device).manual_seed(random_seed) else: generator = torch.Generator(device=device) generator.seed() noise_scheduler.set_timesteps(ddim_steps) # init noise noise = torch.randn((1, codec_dim, audio_frames), generator=generator, device=device) latents = noise for t in noise_scheduler.timesteps: latents = noise_scheduler.scale_model_input(latents, t) if guidance_scale: latents_combined = torch.cat([latents, latents], dim=0) text_combined = torch.cat([text, uncond_text], dim=0) text_mask_combined = torch.cat([text_mask, uncond_text_mask], dim=0) condition_combined = torch.cat([condition, condition], dim=0) if gt is not None: gt_combined = torch.cat([gt, gt], dim=0) gt_mask_combined = torch.cat([gt_mask, gt_mask], dim=0) else: gt_combined = None gt_mask_combined = None x, _ = unet(latents_combined, t, text_combined, context_mask=text_mask_combined, cls_token=None, gt=gt_combined, mae_mask_infer=gt_mask_combined, forward_model=False) controlnet_skips = controlnet(x, t, text_combined, context_mask=text_mask_combined, cls_token=None, condition=condition_combined, conditioning_scale=conditioning_scale) output_combined = unet.model(x, t, text_combined, context_mask=text_mask_combined, cls_token=None, controlnet_skips=controlnet_skips) output_text, output_uncond = torch.chunk(output_combined, 2, dim=0) output_pred = output_uncond + guidance_scale * (output_text - output_uncond) if guidance_rescale > 0.0: output_pred = rescale_noise_cfg(output_pred, output_text, guidance_rescale=guidance_rescale) else: x, _ = unet(latents, t, text, context_mask=text_mask, cls_token=None, gt=gt, mae_mask_infer=gt_mask, forward_model=False) controlnet_skips = controlnet(x, t, text, context_mask=text_mask, cls_token=None, condition=condition, conditioning_scale=conditioning_scale) output_pred = unet.model(x, t, text, context_mask=text_mask, cls_token=None, controlnet_skips=controlnet_skips) latents = noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents, eta=eta, generator=generator).prev_sample pred = scale_shift_re(latents, params['autoencoder']['scale'], params['autoencoder']['shift']) if gt is not None: pred[~gt_mask] = gt[~gt_mask] pred_wav = autoencoder(embedding=pred) return pred_wav