Spaces:
Paused
Paused
File size: 8,150 Bytes
0f8ec45 8f1a540 0f8ec45 8f1a540 0f8ec45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from __future__ import annotations
import uuid
import os
import math
import random
import spaces
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionInstructPix2PixPipeline
from huggingface_hub import InferenceClient
help_text = """
To optimize image editing results:
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
- Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
- **Rephrase your instructions** for potentially better results.
- **Increase the number of steps** for enhanced edits.
- For better facial details, especially if they're small, **crop the image** to enlarge the face's presence.
"""
model_id = "timbrooks/instruct-pix2pix"
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"sd-community/sdxl-flash",
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 999999)
return seed
def resize_image(image, output_size=(512, 512)):
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
pipe2 = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cuda")
@spaces.GPU(duration=30, queue=False)
def king(type = "Image Editing",
input_image = None,
instruction: str = "Eiffel tower",
steps: int = 8,
randomize_seed: bool = False,
seed: int = 24,
text_cfg_scale: float = 7.3,
image_cfg_scale: float = 1.7,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
if type=="Image Generation" :
pipe.to(device)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
options = {
"prompt":instruction,
"width":width,
"height":height,
"guidance_scale":guidance_scale,
"num_inference_steps":steps,
"generator":generator,
"use_resolution_binning":use_resolution_binning,
"output_type":"pil",
}
output_image = pipe(**options).images[0]
return seed, output_image
else:
seed = int(randomize_seed_fn(seed, randomize_seed))
text_cfg_scale = text_cfg_scale
image_cfg_scale = image_cfg_scale
input_image = input_image
steps=steps*6
generator = torch.manual_seed(seed)
output_image = pipe2(
instruction, image=input_image,
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
num_inference_steps=steps, generator=generator).images[0]
return seed, output_image
def response(instruction, input_image=None):
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
generate_kwargs = dict(
max_new_tokens=5,
)
system="[SYSTEM] You will be provided with text, and your task is to classify task is image generation or image editing answer with only task do not say anything else and stop as soon as possible. [TEXT]"
formatted_prompt = system + instruction + "[TASK]"
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
if input_image is None:
output="Image Generation"
if "editing" in output:
output = "Image Editing"
else:
output = "Image Generation"
return output
css = '''
.gradio-container{max-width: 600px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
def get_example():
case = [
[
"Image Generation",
None,
"A Super Car",
],
[
"Image Editing",
"./supercar.png",
"make it red",
],
[
"Image Editing",
"./red_car.png",
"add some snow",
],
[
"Image Generation",
None,
"Ironman flying in front of Ststue of liberty",
],
[
"Image Generation",
None,
"Beautiful Eiffel Tower at Night",
],
]
return case
with gr.Blocks(css=css) as demo:
gr.Markdown("# Image Generator Pro")
with gr.Row():
with gr.Column(scale=4):
instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
with gr.Column(scale=1):
generate_button = gr.Button("Generate")
with gr.Column(scale=1):
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, visible=False)
with gr.Row():
input_image = gr.Image(label="Image", type="pil", interactive=True)
with gr.Row():
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
steps = gr.Number(value=8, precision=0, label="Steps", interactive=True)
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Randomize Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
gr.Examples(
examples=get_example(),
inputs=[type,input_image, instruction],
fn=king,
outputs=[input_image],
cache_examples=True,
)
gr.Markdown(help_text)
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
generate_button.click(
fn=king,
inputs=[type,
input_image,
instruction,
steps,
randomize_seed,
seed,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, input_image],
)
demo.queue(max_size=99999).launch() |