Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import gradio as gr | |
| import os | |
| from openai import OpenAI | |
| # Retrieve the access token from the environment variable | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| print("Access token loaded.") | |
| # Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| api_key=ACCESS_TOKEN, | |
| ) | |
| print("OpenAI client initialized.") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| frequency_penalty, | |
| seed, | |
| custom_model, | |
| featured_model | |
| ): | |
| """ | |
| This function handles the chatbot response. It takes in: | |
| - message: the user's new message | |
| - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
| - system_message: the system prompt | |
| - max_tokens: the maximum number of tokens to generate in the response | |
| - temperature: sampling temperature | |
| - top_p: top-p (nucleus) sampling | |
| - frequency_penalty: penalize repeated tokens in the output | |
| - seed: a fixed seed for reproducibility; -1 will mean 'random' | |
| - custom_model: a user-provided custom model name (if any) | |
| - featured_model: the user-selected model from the radio | |
| """ | |
| print(f"Received message: {message}") | |
| print(f"History: {history}") | |
| print(f"System message: {system_message}") | |
| print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
| print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
| print(f"Custom model: {custom_model}") | |
| print(f"Featured model: {featured_model}") | |
| # Convert seed to None if -1 (meaning "random") | |
| if seed == -1: | |
| seed = None | |
| # Construct the conversation array required by the HF Inference API | |
| messages = [{"role": "system", "content": system_message or ""}] | |
| # Add conversation history | |
| for val in history: | |
| user_part = val[0] | |
| assistant_part = val[1] | |
| if user_part: | |
| messages.append({"role": "user", "content": user_part}) | |
| print(f"Added user message to context: {user_part}") | |
| if assistant_part: | |
| messages.append({"role": "assistant", "content": assistant_part}) | |
| print(f"Added assistant message to context: {assistant_part}") | |
| # The latest user message | |
| messages.append({"role": "user", "content": message}) | |
| # If custom_model is not empty, it overrides the featured model | |
| model_to_use = custom_model.strip() if custom_model.strip() != "" else featured_model.strip() | |
| # If somehow both are empty, default to an example model | |
| if model_to_use == "": | |
| model_to_use = "meta-llama/Llama-3.3-70B-Instruct" | |
| print(f"Model selected for inference: {model_to_use}") | |
| # Build the response from the streaming tokens | |
| response = "" | |
| print("Sending request to OpenAI API.") | |
| # Streaming request to the HF Inference API | |
| for message_chunk in client.chat.completions.create( | |
| model=model_to_use, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| frequency_penalty=frequency_penalty, | |
| seed=seed, | |
| messages=messages, | |
| ): | |
| # Extract the token text from the response chunk | |
| token_text = message_chunk.choices[0].delta.content | |
| print(f"Received token: {token_text}") | |
| response += token_text | |
| # Yield partial response so Gradio can display in real-time | |
| yield response | |
| print("Completed response generation.") | |
| # | |
| # Building the Gradio interface below | |
| # | |
| print("Building the Gradio interface with advanced features...") | |
| # --- Create a list of 'Featured Models' for demonstration. You can customize as you wish. --- | |
| models_list = ( | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "BigScience/bloom", | |
| "openai/gpt-4", | |
| "google/flan-t5-xxl", | |
| "EleutherAI/gpt-j-6B", | |
| "YourSpecialModel/awesome-13B", | |
| ) | |
| # This function filters the above models_list by a given search term: | |
| def filter_models(search_term): | |
| filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
| return gr.update(choices=filtered) | |
| # We’ll create a Chatbot in a Blocks layout to incorporate an Accordion for "Featured Models" | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
| gr.Markdown("## Serverless-TextGen-Hub\nA comprehensive UI for text generation, including featured models and custom model overrides.") | |
| # The Chatbot itself | |
| chatbot = gr.Chatbot(label="TextGen Chatbot", height=600) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| # We create interactive UI elements that will feed into the 'respond' function | |
| # System message | |
| system_message = gr.Textbox(label="System message", placeholder="Set the system role instructions here.") | |
| # Accordion for selecting the model | |
| with gr.Accordion("Featured Models", open=True): | |
| model_search = gr.Textbox( | |
| label="Filter Models", | |
| placeholder="Search for a featured model...", | |
| lines=1 | |
| ) | |
| featured_model = gr.Radio( | |
| label="Select a Featured Model Below", | |
| choices=models_list, | |
| value="meta-llama/Llama-3.3-70B-Instruct", # default | |
| interactive=True, | |
| ) | |
| # Link the search box to filter the radio model choices | |
| model_search.change(filter_models, inputs=model_search, outputs=featured_model) | |
| # A text box to optionally override the featured model | |
| custom_model = gr.Textbox( | |
| label="Custom Model", | |
| info="(Optional) Provide a custom HF model path. If non-empty, it overrides your featured model choice." | |
| ) | |
| # Sliders | |
| max_tokens = gr.Slider( | |
| minimum=1, | |
| maximum=4096, | |
| value=512, | |
| step=1, | |
| label="Max new tokens" | |
| ) | |
| temperature = gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-P" | |
| ) | |
| frequency_penalty = gr.Slider( | |
| minimum=-2.0, | |
| maximum=2.0, | |
| value=0.0, | |
| step=0.1, | |
| label="Frequency Penalty" | |
| ) | |
| seed = gr.Slider( | |
| minimum=-1, | |
| maximum=65535, | |
| value=-1, | |
| step=1, | |
| label="Seed (-1 for random)" | |
| ) | |
| # The "chat" Column | |
| with gr.Column(scale=2): | |
| # We store the conversation history in a state variable | |
| state = gr.State([]) # Each element in state is (user_message, assistant_message) | |
| # Chat input box for the user | |
| with gr.Row(): | |
| txt = gr.Textbox( | |
| label="Enter your message", | |
| placeholder="Type your request here, then press 'Submit'", | |
| lines=3 | |
| ) | |
| # Button to submit the message | |
| submit_btn = gr.Button("Submit", variant="primary") | |
| # | |
| # The 'respond' function is tied to the chatbot display. | |
| # We'll define a small wrapper that updates the 'history' (state) each time. | |
| # | |
| def user_submit(user_message, chat_history): | |
| """ | |
| This function just adds the user message to the history and returns it. | |
| The actual text generation will come from 'bot_respond' next. | |
| """ | |
| # Append new user message to the existing conversation | |
| chat_history = chat_history + [(user_message, None)] | |
| return "", chat_history | |
| def bot_respond(chat_history, sys_msg, max_t, temp, top, freq_pen, s, custom_mod, feat_model): | |
| """ | |
| This function calls our 'respond' generator to get the text. | |
| It updates the last message in chat_history with the bot's response as it streams. | |
| """ | |
| user_message = chat_history[-1][0] if len(chat_history) > 0 else "" | |
| # We call the generator | |
| bot_messages = respond( | |
| user_message, | |
| chat_history[:-1], # all but the last user message | |
| sys_msg, | |
| max_t, | |
| temp, | |
| top, | |
| freq_pen, | |
| s, | |
| custom_mod, | |
| feat_model, | |
| ) | |
| # Stream the tokens back | |
| final_bot_msg = "" | |
| for token_text in bot_messages: | |
| final_bot_msg = token_text | |
| # We'll update the chatbot in real-time | |
| chat_history[-1] = (user_message, final_bot_msg) | |
| yield chat_history | |
| # Tie the Submit button to the user_submit function, and then to bot_respond | |
| submit_btn.click( | |
| user_submit, | |
| inputs=[txt, state], | |
| outputs=[txt, state], | |
| queue=False | |
| ).then( | |
| bot_respond, | |
| inputs=[state, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, custom_model, featured_model], | |
| outputs=[chatbot], | |
| queue=True | |
| ) | |
| print("Interface construction complete. Ready to launch!") | |
| # Launch the Gradio Blocks interface | |
| if __name__ == "__main__": | |
| print("Launching the demo application.") | |
| demo.launch() | 
