Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -3,23 +3,13 @@ from openai import OpenAI | |
| 3 | 
             
            import os
         | 
| 4 |  | 
| 5 | 
             
            ACCESS_TOKEN = os.getenv("HF_TOKEN")
         | 
|  | |
| 6 |  | 
| 7 | 
            -
            def show_loading_status(msg):
         | 
| 8 | 
            -
                
         | 
| 9 | 
            -
                try:
         | 
| 10 | 
            -
                    gr.toast(msg)
         | 
| 11 | 
            -
                except:
         | 
| 12 | 
            -
                    pass
         | 
| 13 | 
            -
                print(msg)
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            show_loading_status("Access token loaded.")
         | 
| 16 | 
            -
             | 
| 17 | 
            -
            # Initialize the Hugging Face Inference-based OpenAI client
         | 
| 18 | 
             
            client = OpenAI(
         | 
| 19 | 
             
                base_url="https://api-inference.huggingface.co/v1/",
         | 
| 20 | 
             
                api_key=ACCESS_TOKEN,
         | 
| 21 | 
             
            )
         | 
| 22 | 
            -
             | 
| 23 |  | 
| 24 |  | 
| 25 | 
             
            def respond(
         | 
| @@ -33,18 +23,20 @@ def respond( | |
| 33 | 
             
                seed,
         | 
| 34 | 
             
                custom_model
         | 
| 35 | 
             
            ):
         | 
| 36 | 
            -
             | 
| 37 | 
            -
                 | 
| 38 | 
            -
                 | 
| 39 | 
            -
                 | 
| 40 | 
            -
                 | 
| 41 | 
            -
                 | 
|  | |
| 42 |  | 
| 43 | 
             
                # Convert seed to None if -1 (meaning random)
         | 
| 44 | 
            -
                 | 
|  | |
| 45 |  | 
| 46 | 
             
                messages = [{"role": "system", "content": system_message}]
         | 
| 47 | 
            -
                 | 
| 48 |  | 
| 49 | 
             
                # Add conversation history to the context
         | 
| 50 | 
             
                for val in history:
         | 
| @@ -52,62 +44,46 @@ def respond( | |
| 52 | 
             
                    assistant_part = val[1]
         | 
| 53 | 
             
                    if user_part:
         | 
| 54 | 
             
                        messages.append({"role": "user", "content": user_part})
         | 
| 55 | 
            -
                         | 
| 56 | 
             
                    if assistant_part:
         | 
| 57 | 
             
                        messages.append({"role": "assistant", "content": assistant_part})
         | 
| 58 | 
            -
                         | 
| 59 |  | 
| 60 | 
             
                # Append the latest user message
         | 
| 61 | 
             
                messages.append({"role": "user", "content": message})
         | 
| 62 | 
            -
                 | 
| 63 |  | 
| 64 | 
            -
                # If user provided a model, use that; otherwise, fall back to a default
         | 
| 65 | 
             
                model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
         | 
| 66 | 
            -
                 | 
| 67 | 
            -
             | 
| 68 | 
            -
                 | 
| 69 | 
            -
                 | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
                    show_loading_status("Completed response generation.")
         | 
| 89 | 
            -
             | 
| 90 | 
            -
                except Exception as e:
         | 
| 91 | 
            -
                    show_loading_status("Error encountered during completion streaming.")
         | 
| 92 | 
            -
                    raise gr.Error(f"An unexpected error occurred: {str(e)}")
         | 
| 93 | 
            -
             | 
| 94 |  | 
| 95 | 
             
            # GRADIO UI
         | 
| 96 |  | 
| 97 | 
            -
            chatbot = gr.Chatbot(
         | 
| 98 | 
            -
             | 
| 99 | 
            -
                show_copy_button=True, 
         | 
| 100 | 
            -
                placeholder="Select a model and begin chatting", 
         | 
| 101 | 
            -
                likeable=True, 
         | 
| 102 | 
            -
                layout="panel"
         | 
| 103 | 
            -
            )
         | 
| 104 | 
            -
            show_loading_status("Chatbot interface created.")
         | 
| 105 |  | 
| 106 | 
            -
            system_message_box = gr.Textbox(
         | 
| 107 | 
            -
                value="", 
         | 
| 108 | 
            -
                placeholder="You are a helpful assistant.", 
         | 
| 109 | 
            -
                label="System Prompt"
         | 
| 110 | 
            -
            )
         | 
| 111 |  | 
| 112 | 
             
            max_tokens_slider = gr.Slider(
         | 
| 113 | 
             
                minimum=1,
         | 
| @@ -139,21 +115,26 @@ frequency_penalty_slider = gr.Slider( | |
| 139 | 
             
            )
         | 
| 140 | 
             
            seed_slider = gr.Slider(
         | 
| 141 | 
             
                minimum=-1,
         | 
| 142 | 
            -
                maximum= | 
| 143 | 
             
                value=-1,
         | 
| 144 | 
             
                step=1,
         | 
| 145 | 
             
                label="Seed (-1 for random)"
         | 
| 146 | 
             
            )
         | 
| 147 |  | 
|  | |
| 148 | 
             
            custom_model_box = gr.Textbox(
         | 
| 149 | 
             
                value="",
         | 
| 150 | 
             
                label="Custom Model",
         | 
| 151 | 
            -
                info="(Optional) Provide a custom Hugging Face model path.  | 
| 152 | 
             
                placeholder="meta-llama/Llama-3.3-70B-Instruct"
         | 
| 153 | 
             
            )
         | 
| 154 |  | 
| 155 | 
             
            def set_custom_model_from_radio(selected):
         | 
| 156 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
| 157 | 
             
                return selected
         | 
| 158 |  | 
| 159 | 
             
            demo = gr.ChatInterface(
         | 
| @@ -171,7 +152,7 @@ demo = gr.ChatInterface( | |
| 171 | 
             
                chatbot=chatbot,
         | 
| 172 | 
             
                theme="Nymbo/Nymbo_Theme",
         | 
| 173 | 
             
            )
         | 
| 174 | 
            -
             | 
| 175 |  | 
| 176 | 
             
            with demo:
         | 
| 177 | 
             
                with gr.Accordion("Model Selection", open=False):
         | 
| @@ -180,7 +161,7 @@ with demo: | |
| 180 | 
             
                        placeholder="Search for a featured model...",
         | 
| 181 | 
             
                        lines=1
         | 
| 182 | 
             
                    )
         | 
| 183 | 
            -
                     | 
| 184 |  | 
| 185 | 
             
                    models_list = [
         | 
| 186 | 
             
                        "meta-llama/Llama-3.3-70B-Instruct",
         | 
| @@ -188,15 +169,20 @@ with demo: | |
| 188 | 
             
                        "meta-llama/Llama-3.2-1B-Instruct",
         | 
| 189 | 
             
                        "meta-llama/Llama-3.1-8B-Instruct",
         | 
| 190 | 
             
                        "NousResearch/Hermes-3-Llama-3.1-8B",
         | 
|  | |
|  | |
|  | |
| 191 | 
             
                        "mistralai/Mistral-Nemo-Instruct-2407",
         | 
| 192 | 
             
                        "mistralai/Mixtral-8x7B-Instruct-v0.1",
         | 
| 193 | 
             
                        "mistralai/Mistral-7B-Instruct-v0.3",
         | 
| 194 | 
             
                        "Qwen/Qwen2.5-72B-Instruct",
         | 
| 195 | 
             
                        "Qwen/QwQ-32B-Preview",
         | 
|  | |
| 196 | 
             
                        "HuggingFaceTB/SmolLM2-1.7B-Instruct",
         | 
|  | |
| 197 | 
             
                        "microsoft/Phi-3.5-mini-instruct",
         | 
| 198 | 
             
                    ]
         | 
| 199 | 
            -
                     | 
| 200 |  | 
| 201 | 
             
                    featured_model_radio = gr.Radio(
         | 
| 202 | 
             
                        label="Select a model below",
         | 
| @@ -204,12 +190,12 @@ with demo: | |
| 204 | 
             
                        value="meta-llama/Llama-3.3-70B-Instruct",
         | 
| 205 | 
             
                        interactive=True
         | 
| 206 | 
             
                    )
         | 
| 207 | 
            -
                     | 
| 208 |  | 
| 209 | 
             
                    def filter_models(search_term):
         | 
| 210 | 
            -
                         | 
| 211 | 
             
                        filtered = [m for m in models_list if search_term.lower() in m.lower()]
         | 
| 212 | 
            -
                         | 
| 213 | 
             
                        return gr.update(choices=filtered)
         | 
| 214 |  | 
| 215 | 
             
                    model_search_box.change(
         | 
| @@ -217,17 +203,17 @@ with demo: | |
| 217 | 
             
                        inputs=model_search_box,
         | 
| 218 | 
             
                        outputs=featured_model_radio
         | 
| 219 | 
             
                    )
         | 
| 220 | 
            -
                     | 
| 221 |  | 
| 222 | 
             
                    featured_model_radio.change(
         | 
| 223 | 
             
                        fn=set_custom_model_from_radio,
         | 
| 224 | 
             
                        inputs=featured_model_radio,
         | 
| 225 | 
             
                        outputs=custom_model_box
         | 
| 226 | 
             
                    )
         | 
| 227 | 
            -
                     | 
| 228 |  | 
| 229 | 
            -
             | 
| 230 |  | 
| 231 | 
             
            if __name__ == "__main__":
         | 
| 232 | 
            -
                 | 
| 233 | 
             
                demo.launch()
         | 
|  | |
| 3 | 
             
            import os
         | 
| 4 |  | 
| 5 | 
             
            ACCESS_TOKEN = os.getenv("HF_TOKEN")
         | 
| 6 | 
            +
            print("Access token loaded.")
         | 
| 7 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 | 
             
            client = OpenAI(
         | 
| 9 | 
             
                base_url="https://api-inference.huggingface.co/v1/",
         | 
| 10 | 
             
                api_key=ACCESS_TOKEN,
         | 
| 11 | 
             
            )
         | 
| 12 | 
            +
            print("OpenAI client initialized.")
         | 
| 13 |  | 
| 14 |  | 
| 15 | 
             
            def respond(
         | 
|  | |
| 23 | 
             
                seed,
         | 
| 24 | 
             
                custom_model
         | 
| 25 | 
             
            ):
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                print(f"Received message: {message}")
         | 
| 28 | 
            +
                print(f"History: {history}")
         | 
| 29 | 
            +
                print(f"System message: {system_message}")
         | 
| 30 | 
            +
                print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
         | 
| 31 | 
            +
                print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
         | 
| 32 | 
            +
                print(f"Selected model (custom_model): {custom_model}")
         | 
| 33 |  | 
| 34 | 
             
                # Convert seed to None if -1 (meaning random)
         | 
| 35 | 
            +
                if seed == -1:
         | 
| 36 | 
            +
                    seed = None
         | 
| 37 |  | 
| 38 | 
             
                messages = [{"role": "system", "content": system_message}]
         | 
| 39 | 
            +
                print("Initial messages array constructed.")
         | 
| 40 |  | 
| 41 | 
             
                # Add conversation history to the context
         | 
| 42 | 
             
                for val in history:
         | 
|  | |
| 44 | 
             
                    assistant_part = val[1]
         | 
| 45 | 
             
                    if user_part:
         | 
| 46 | 
             
                        messages.append({"role": "user", "content": user_part})
         | 
| 47 | 
            +
                        print(f"Added user message to context: {user_part}")
         | 
| 48 | 
             
                    if assistant_part:
         | 
| 49 | 
             
                        messages.append({"role": "assistant", "content": assistant_part})
         | 
| 50 | 
            +
                        print(f"Added assistant message to context: {assistant_part}")
         | 
| 51 |  | 
| 52 | 
             
                # Append the latest user message
         | 
| 53 | 
             
                messages.append({"role": "user", "content": message})
         | 
| 54 | 
            +
                print("Latest user message appended.")
         | 
| 55 |  | 
| 56 | 
            +
                # If user provided a model, use that; otherwise, fall back to a default model
         | 
| 57 | 
             
                model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
         | 
| 58 | 
            +
                print(f"Model selected for inference: {model_to_use}")
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                # Start with an empty string to build the response as tokens stream in
         | 
| 61 | 
            +
                response = ""
         | 
| 62 | 
            +
                print("Sending request to OpenAI API.")
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                for message_chunk in client.chat.completions.create(
         | 
| 65 | 
            +
                    model=model_to_use,
         | 
| 66 | 
            +
                    max_tokens=max_tokens,
         | 
| 67 | 
            +
                    stream=True,
         | 
| 68 | 
            +
                    temperature=temperature,
         | 
| 69 | 
            +
                    top_p=top_p,
         | 
| 70 | 
            +
                    frequency_penalty=frequency_penalty,
         | 
| 71 | 
            +
                    seed=seed,
         | 
| 72 | 
            +
                    messages=messages,
         | 
| 73 | 
            +
                ):
         | 
| 74 | 
            +
                    token_text = message_chunk.choices[0].delta.content
         | 
| 75 | 
            +
                    print(f"Received token: {token_text}")
         | 
| 76 | 
            +
                    response += token_text
         | 
| 77 | 
            +
                    yield response
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                print("Completed response generation.")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 80 |  | 
| 81 | 
             
            # GRADIO UI
         | 
| 82 |  | 
| 83 | 
            +
            chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
         | 
| 84 | 
            +
            print("Chatbot interface created.")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 85 |  | 
| 86 | 
            +
            system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
         | 
|  | |
|  | |
|  | |
|  | |
| 87 |  | 
| 88 | 
             
            max_tokens_slider = gr.Slider(
         | 
| 89 | 
             
                minimum=1,
         | 
|  | |
| 115 | 
             
            )
         | 
| 116 | 
             
            seed_slider = gr.Slider(
         | 
| 117 | 
             
                minimum=-1,
         | 
| 118 | 
            +
                maximum=65535,
         | 
| 119 | 
             
                value=-1,
         | 
| 120 | 
             
                step=1,
         | 
| 121 | 
             
                label="Seed (-1 for random)"
         | 
| 122 | 
             
            )
         | 
| 123 |  | 
| 124 | 
            +
            # The custom_model_box is what the respond function sees as "custom_model"
         | 
| 125 | 
             
            custom_model_box = gr.Textbox(
         | 
| 126 | 
             
                value="",
         | 
| 127 | 
             
                label="Custom Model",
         | 
| 128 | 
            +
                info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
         | 
| 129 | 
             
                placeholder="meta-llama/Llama-3.3-70B-Instruct"
         | 
| 130 | 
             
            )
         | 
| 131 |  | 
| 132 | 
             
            def set_custom_model_from_radio(selected):
         | 
| 133 | 
            +
                """
         | 
| 134 | 
            +
                This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
         | 
| 135 | 
            +
                We will update the Custom Model text box with that selection automatically.
         | 
| 136 | 
            +
                """
         | 
| 137 | 
            +
                print(f"Featured model selected: {selected}")
         | 
| 138 | 
             
                return selected
         | 
| 139 |  | 
| 140 | 
             
            demo = gr.ChatInterface(
         | 
|  | |
| 152 | 
             
                chatbot=chatbot,
         | 
| 153 | 
             
                theme="Nymbo/Nymbo_Theme",
         | 
| 154 | 
             
            )
         | 
| 155 | 
            +
            print("ChatInterface object created.")
         | 
| 156 |  | 
| 157 | 
             
            with demo:
         | 
| 158 | 
             
                with gr.Accordion("Model Selection", open=False):
         | 
|  | |
| 161 | 
             
                        placeholder="Search for a featured model...",
         | 
| 162 | 
             
                        lines=1
         | 
| 163 | 
             
                    )
         | 
| 164 | 
            +
                    print("Model search box created.")
         | 
| 165 |  | 
| 166 | 
             
                    models_list = [
         | 
| 167 | 
             
                        "meta-llama/Llama-3.3-70B-Instruct",
         | 
|  | |
| 169 | 
             
                        "meta-llama/Llama-3.2-1B-Instruct",
         | 
| 170 | 
             
                        "meta-llama/Llama-3.1-8B-Instruct",
         | 
| 171 | 
             
                        "NousResearch/Hermes-3-Llama-3.1-8B",
         | 
| 172 | 
            +
                        "google/gemma-2-27b-it",
         | 
| 173 | 
            +
                        "google/gemma-2-9b-it",
         | 
| 174 | 
            +
                        "google/gemma-2-2b-it",
         | 
| 175 | 
             
                        "mistralai/Mistral-Nemo-Instruct-2407",
         | 
| 176 | 
             
                        "mistralai/Mixtral-8x7B-Instruct-v0.1",
         | 
| 177 | 
             
                        "mistralai/Mistral-7B-Instruct-v0.3",
         | 
| 178 | 
             
                        "Qwen/Qwen2.5-72B-Instruct",
         | 
| 179 | 
             
                        "Qwen/QwQ-32B-Preview",
         | 
| 180 | 
            +
                        "PowerInfer/SmallThinker-3B-Preview",
         | 
| 181 | 
             
                        "HuggingFaceTB/SmolLM2-1.7B-Instruct",
         | 
| 182 | 
            +
                        "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
         | 
| 183 | 
             
                        "microsoft/Phi-3.5-mini-instruct",
         | 
| 184 | 
             
                    ]
         | 
| 185 | 
            +
                    print("Models list initialized.")
         | 
| 186 |  | 
| 187 | 
             
                    featured_model_radio = gr.Radio(
         | 
| 188 | 
             
                        label="Select a model below",
         | 
|  | |
| 190 | 
             
                        value="meta-llama/Llama-3.3-70B-Instruct",
         | 
| 191 | 
             
                        interactive=True
         | 
| 192 | 
             
                    )
         | 
| 193 | 
            +
                    print("Featured models radio button created.")
         | 
| 194 |  | 
| 195 | 
             
                    def filter_models(search_term):
         | 
| 196 | 
            +
                        print(f"Filtering models with search term: {search_term}")
         | 
| 197 | 
             
                        filtered = [m for m in models_list if search_term.lower() in m.lower()]
         | 
| 198 | 
            +
                        print(f"Filtered models: {filtered}")
         | 
| 199 | 
             
                        return gr.update(choices=filtered)
         | 
| 200 |  | 
| 201 | 
             
                    model_search_box.change(
         | 
|  | |
| 203 | 
             
                        inputs=model_search_box,
         | 
| 204 | 
             
                        outputs=featured_model_radio
         | 
| 205 | 
             
                    )
         | 
| 206 | 
            +
                    print("Model search box change event linked.")
         | 
| 207 |  | 
| 208 | 
             
                    featured_model_radio.change(
         | 
| 209 | 
             
                        fn=set_custom_model_from_radio,
         | 
| 210 | 
             
                        inputs=featured_model_radio,
         | 
| 211 | 
             
                        outputs=custom_model_box
         | 
| 212 | 
             
                    )
         | 
| 213 | 
            +
                    print("Featured model radio button change event linked.")
         | 
| 214 |  | 
| 215 | 
            +
            print("Gradio interface initialized.")
         | 
| 216 |  | 
| 217 | 
             
            if __name__ == "__main__":
         | 
| 218 | 
            +
                print("Launching the demo application.")
         | 
| 219 | 
             
                demo.launch()
         | 
