Spaces:
Running
Running
adding info tab with featured models table and parameters overview
Browse files
app.py
CHANGED
|
@@ -2,11 +2,26 @@ import gradio as gr
|
|
| 2 |
from openai import OpenAI
|
| 3 |
import os
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Retrieve the access token from the environment variable
|
| 6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 7 |
print("Access token loaded.")
|
| 8 |
|
| 9 |
-
# Initialize the OpenAI client
|
| 10 |
client = OpenAI(
|
| 11 |
base_url="https://api-inference.huggingface.co/v1/",
|
| 12 |
api_key=ACCESS_TOKEN,
|
|
@@ -48,19 +63,19 @@ def respond(
|
|
| 48 |
if seed == -1:
|
| 49 |
seed = None
|
| 50 |
|
| 51 |
-
# Construct the messages array required by the API
|
| 52 |
messages = [{"role": "system", "content": system_message}]
|
| 53 |
print("Initial messages array constructed.")
|
| 54 |
|
| 55 |
# Add conversation history to the context
|
| 56 |
for val in history:
|
| 57 |
user_part = val[0] # Extract user message from the tuple
|
| 58 |
-
assistant_part = val[1] # Extract assistant message
|
| 59 |
if user_part:
|
| 60 |
-
messages.append({"role": "user", "content": user_part})
|
| 61 |
print(f"Added user message to context: {user_part}")
|
| 62 |
if assistant_part:
|
| 63 |
-
messages.append({"role": "assistant", "content": assistant_part})
|
| 64 |
print(f"Added assistant message to context: {assistant_part}")
|
| 65 |
|
| 66 |
# Append the latest user message
|
|
@@ -71,179 +86,262 @@ def respond(
|
|
| 71 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
| 72 |
print(f"Model selected for inference: {model_to_use}")
|
| 73 |
|
| 74 |
-
# Start with an empty string to build the response
|
| 75 |
-
|
| 76 |
-
print("Sending request to OpenAI
|
| 77 |
|
| 78 |
-
# Make the streaming request to the HF Inference API
|
| 79 |
for message_chunk in client.chat.completions.create(
|
| 80 |
-
model=model_to_use,
|
| 81 |
-
max_tokens=max_tokens,
|
| 82 |
-
stream=True,
|
| 83 |
-
temperature=temperature,
|
| 84 |
-
top_p=top_p,
|
| 85 |
-
frequency_penalty=frequency_penalty,
|
| 86 |
-
seed=seed,
|
| 87 |
-
messages=messages,
|
| 88 |
):
|
| 89 |
# Extract the token text from the response chunk
|
| 90 |
token_text = message_chunk.choices[0].delta.content
|
| 91 |
print(f"Received token: {token_text}")
|
| 92 |
-
|
| 93 |
# Yield the partial response to Gradio so it can display in real-time
|
| 94 |
-
yield
|
| 95 |
|
| 96 |
print("Completed response generation.")
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
#
|
| 100 |
-
#
|
| 101 |
|
| 102 |
-
#
|
| 103 |
-
|
| 104 |
-
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
)
|
| 144 |
|
| 145 |
-
#
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
seed_slider, # Seed slider
|
| 171 |
-
custom_model_box # Custom model input
|
| 172 |
-
],
|
| 173 |
-
fill_height=True, # Allow the chatbot to fill the container height
|
| 174 |
-
chatbot=chatbot, # Chatbot UI component
|
| 175 |
-
theme="Nymbo/Nymbo_Theme", # Theme for the interface
|
| 176 |
-
)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
#
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
placeholder="Search for a featured model...", # Placeholder text
|
| 188 |
-
lines=1 # Single-line input
|
| 189 |
)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
"
|
| 197 |
-
"
|
| 198 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
| 199 |
-
"google/gemma-2-27b-it",
|
| 200 |
-
"google/gemma-2-9b-it",
|
| 201 |
-
"google/gemma-2-2b-it",
|
| 202 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 203 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 204 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 205 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
| 206 |
-
"Qwen/QwQ-32B-Preview",
|
| 207 |
-
"PowerInfer/SmallThinker-3B-Preview",
|
| 208 |
-
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
| 209 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 210 |
-
"microsoft/Phi-3.5-mini-instruct",
|
| 211 |
-
]
|
| 212 |
-
print("Models list initialized.")
|
| 213 |
-
|
| 214 |
-
featured_model_radio = gr.Radio(
|
| 215 |
-
label="Select a model below", # Label for the radio buttons
|
| 216 |
-
choices=models_list, # List of available models
|
| 217 |
-
value="meta-llama/Llama-3.3-70B-Instruct", # Default selection
|
| 218 |
-
interactive=True # Allow user interaction
|
| 219 |
)
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
# Update the radio list when the search box value changes
|
| 230 |
-
model_search_box.change(
|
| 231 |
-
fn=filter_models, # Function to filter models
|
| 232 |
-
inputs=model_search_box, # Input: search box value
|
| 233 |
-
outputs=featured_model_radio # Output: update radio button list
|
| 234 |
)
|
| 235 |
-
print("Model search box change event linked.")
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
| 242 |
)
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
print("Gradio interface initialized.")
|
| 246 |
|
|
|
|
|
|
|
|
|
|
| 247 |
if __name__ == "__main__":
|
| 248 |
print("Launching the demo application.")
|
| 249 |
demo.launch()
|
|
|
|
| 2 |
from openai import OpenAI
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
# -------------------
|
| 6 |
+
# SERVERLESS-TEXTGEN-HUB
|
| 7 |
+
# -------------------
|
| 8 |
+
#
|
| 9 |
+
# This version has been updated to include an "Information" tab above the Chat tab.
|
| 10 |
+
# The Information tab has two accordions:
|
| 11 |
+
# - "Featured Models" which displays a simple table
|
| 12 |
+
# - "Parameters Overview" which contains markdown describing the settings
|
| 13 |
+
#
|
| 14 |
+
# The Chat tab contains the existing chatbot UI.
|
| 15 |
+
|
| 16 |
+
# -------------------
|
| 17 |
+
# SETUP AND CONFIG
|
| 18 |
+
# -------------------
|
| 19 |
+
|
| 20 |
# Retrieve the access token from the environment variable
|
| 21 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 22 |
print("Access token loaded.")
|
| 23 |
|
| 24 |
+
# Initialize the OpenAI-like client (Hugging Face Inference API) with your token
|
| 25 |
client = OpenAI(
|
| 26 |
base_url="https://api-inference.huggingface.co/v1/",
|
| 27 |
api_key=ACCESS_TOKEN,
|
|
|
|
| 63 |
if seed == -1:
|
| 64 |
seed = None
|
| 65 |
|
| 66 |
+
# Construct the messages array required by the HF Inference API
|
| 67 |
messages = [{"role": "system", "content": system_message}]
|
| 68 |
print("Initial messages array constructed.")
|
| 69 |
|
| 70 |
# Add conversation history to the context
|
| 71 |
for val in history:
|
| 72 |
user_part = val[0] # Extract user message from the tuple
|
| 73 |
+
assistant_part = val[1] # Extract assistant message
|
| 74 |
if user_part:
|
| 75 |
+
messages.append({"role": "user", "content": user_part})
|
| 76 |
print(f"Added user message to context: {user_part}")
|
| 77 |
if assistant_part:
|
| 78 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
| 79 |
print(f"Added assistant message to context: {assistant_part}")
|
| 80 |
|
| 81 |
# Append the latest user message
|
|
|
|
| 86 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
| 87 |
print(f"Model selected for inference: {model_to_use}")
|
| 88 |
|
| 89 |
+
# Start with an empty string to build the streamed response
|
| 90 |
+
response_text = ""
|
| 91 |
+
print("Sending request to Hugging Face Inference API via OpenAI-like client...")
|
| 92 |
|
| 93 |
+
# Make the streaming request to the HF Inference API
|
| 94 |
for message_chunk in client.chat.completions.create(
|
| 95 |
+
model=model_to_use,
|
| 96 |
+
max_tokens=max_tokens,
|
| 97 |
+
stream=True,
|
| 98 |
+
temperature=temperature,
|
| 99 |
+
top_p=top_p,
|
| 100 |
+
frequency_penalty=frequency_penalty,
|
| 101 |
+
seed=seed,
|
| 102 |
+
messages=messages,
|
| 103 |
):
|
| 104 |
# Extract the token text from the response chunk
|
| 105 |
token_text = message_chunk.choices[0].delta.content
|
| 106 |
print(f"Received token: {token_text}")
|
| 107 |
+
response_text += token_text
|
| 108 |
# Yield the partial response to Gradio so it can display in real-time
|
| 109 |
+
yield response_text
|
| 110 |
|
| 111 |
print("Completed response generation.")
|
| 112 |
|
| 113 |
+
# ----------------------
|
| 114 |
+
# BUILDING THE INTERFACE
|
| 115 |
+
# ----------------------
|
| 116 |
|
| 117 |
+
# We will use a "Blocks" layout with two tabs:
|
| 118 |
+
# 1) "Information" tab, which shows helpful info and a table of "Featured Models"
|
| 119 |
+
# 2) "Chat" tab, which holds our ChatInterface and associated controls
|
| 120 |
|
| 121 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
| 122 |
+
|
| 123 |
+
# -----------------
|
| 124 |
+
# TAB: INFORMATION
|
| 125 |
+
# -----------------
|
| 126 |
+
with gr.Tab("Information"):
|
| 127 |
+
# You can add instructions, disclaimers, or helpful text here
|
| 128 |
+
gr.Markdown("## Welcome to Serverless-TextGen-Hub - Information")
|
| 129 |
|
| 130 |
+
# Accordion for Featured Models (table)
|
| 131 |
+
with gr.Accordion("Featured Models (WiP)", open=False):
|
| 132 |
+
gr.HTML(
|
| 133 |
+
"""
|
| 134 |
+
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=chat&sort=trending" target="_blank">See all available text models on Hugging Face</a></p>
|
| 135 |
+
<table style="width:100%; text-align:center; margin:auto;">
|
| 136 |
+
<tr>
|
| 137 |
+
<th>Model Name</th>
|
| 138 |
+
<th>Supported</th>
|
| 139 |
+
<th>Notes</th>
|
| 140 |
+
</tr>
|
| 141 |
+
<tr>
|
| 142 |
+
<td>meta-llama/Llama-3.3-70B-Instruct</td>
|
| 143 |
+
<td>✅</td>
|
| 144 |
+
<td>Default model, if none is provided in the 'Custom Model' box.</td>
|
| 145 |
+
</tr>
|
| 146 |
+
<tr>
|
| 147 |
+
<td>meta-llama/Llama-3.2-3B-Instruct</td>
|
| 148 |
+
<td>✅</td>
|
| 149 |
+
<td>Smaller Llama-based instruct model for faster responses.</td>
|
| 150 |
+
</tr>
|
| 151 |
+
<tr>
|
| 152 |
+
<td>microsoft/Phi-3.5-mini-instruct</td>
|
| 153 |
+
<td>✅</td>
|
| 154 |
+
<td>A smaller instruct model from Microsoft.</td>
|
| 155 |
+
</tr>
|
| 156 |
+
<tr>
|
| 157 |
+
<td>Qwen/Qwen2.5-72B-Instruct</td>
|
| 158 |
+
<td>✅</td>
|
| 159 |
+
<td>Large-scale Qwen-based model.</td>
|
| 160 |
+
</tr>
|
| 161 |
+
</table>
|
| 162 |
+
"""
|
| 163 |
+
)
|
|
|
|
| 164 |
|
| 165 |
+
# Accordion for Parameters Overview
|
| 166 |
+
with gr.Accordion("Parameters Overview", open=False):
|
| 167 |
+
gr.Markdown(
|
| 168 |
+
"""
|
| 169 |
+
**Here is a brief overview of the main parameters for text generation:**
|
|
|
|
| 170 |
|
| 171 |
+
- **Max Tokens**: The maximum number of tokens (think of these as word-pieces) the model will generate in its response.
|
| 172 |
+
- **Temperature**: Controls how "creative" or random the output is. Lower values = more deterministic, higher values = more varied.
|
| 173 |
+
- **Top-P**: Similar to temperature, but uses nucleus sampling. Top-P defines the probability mass of the tokens to sample from. For example, `top_p=0.9` means "use the top 90% probable tokens."
|
| 174 |
+
- **Frequency Penalty**: A higher penalty discourages repeated tokens, helping reduce repetitive answers.
|
| 175 |
+
- **Seed**: You can set a seed for deterministic results. `-1` means random each time.
|
| 176 |
+
|
| 177 |
+
**Featured Models** can also be selected. If you want to override the model, you may specify a custom Hugging Face model path in the "Custom Model" text box.
|
| 178 |
+
|
| 179 |
+
---
|
| 180 |
+
If you are new to text-generation parameters, the defaults are a great place to start!
|
| 181 |
+
"""
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# -----------
|
| 185 |
+
# TAB: CHAT
|
| 186 |
+
# -----------
|
| 187 |
+
with gr.Tab("Chat"):
|
| 188 |
+
gr.Markdown("## Chat with the TextGen Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
# Create a Chatbot component with a specified height
|
| 191 |
+
chatbot = gr.Chatbot(height=600)
|
| 192 |
+
print("Chatbot interface created.")
|
| 193 |
+
|
| 194 |
+
# Create textboxes and sliders for system prompt, tokens, and other parameters
|
| 195 |
+
system_message_box = gr.Textbox(
|
| 196 |
+
value="",
|
| 197 |
+
label="System message",
|
| 198 |
+
info="You can use this to provide instructions or context to the assistant. Leave empty if not needed."
|
|
|
|
|
|
|
| 199 |
)
|
| 200 |
+
|
| 201 |
+
max_tokens_slider = gr.Slider(
|
| 202 |
+
minimum=1,
|
| 203 |
+
maximum=4096,
|
| 204 |
+
value=512,
|
| 205 |
+
step=1,
|
| 206 |
+
label="Max new tokens",
|
| 207 |
+
info="Controls the maximum length of the output. Keep an eye on your usage!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
)
|
| 209 |
+
|
| 210 |
+
temperature_slider = gr.Slider(
|
| 211 |
+
minimum=0.1,
|
| 212 |
+
maximum=4.0,
|
| 213 |
+
value=0.7,
|
| 214 |
+
step=0.1,
|
| 215 |
+
label="Temperature",
|
| 216 |
+
info="Controls creativity. Higher values = more random replies, lower = more deterministic."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
)
|
|
|
|
| 218 |
|
| 219 |
+
top_p_slider = gr.Slider(
|
| 220 |
+
minimum=0.1,
|
| 221 |
+
maximum=1.0,
|
| 222 |
+
value=0.95,
|
| 223 |
+
step=0.05,
|
| 224 |
+
label="Top-P",
|
| 225 |
+
info="Use nucleus sampling with probability mass cutoff. 1.0 includes all tokens."
|
| 226 |
)
|
| 227 |
+
|
| 228 |
+
frequency_penalty_slider = gr.Slider(
|
| 229 |
+
minimum=-2.0,
|
| 230 |
+
maximum=2.0,
|
| 231 |
+
value=0.0,
|
| 232 |
+
step=0.1,
|
| 233 |
+
label="Frequency Penalty",
|
| 234 |
+
info="Penalize repeated tokens to avoid repetition in output."
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
seed_slider = gr.Slider(
|
| 238 |
+
minimum=-1,
|
| 239 |
+
maximum=65535,
|
| 240 |
+
value=-1,
|
| 241 |
+
step=1,
|
| 242 |
+
label="Seed (-1 for random)",
|
| 243 |
+
info="Fixing a seed (0 to 65535) can make results reproducible. -1 picks a random seed each time."
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# The custom_model_box is what the respond function sees as "custom_model"
|
| 247 |
+
custom_model_box = gr.Textbox(
|
| 248 |
+
value="",
|
| 249 |
+
label="Custom Model",
|
| 250 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Function to update the custom model box when a featured model is selected
|
| 254 |
+
def set_custom_model_from_radio(selected):
|
| 255 |
+
print(f"Featured model selected: {selected}")
|
| 256 |
+
return selected
|
| 257 |
+
|
| 258 |
+
print("ChatInterface object created.")
|
| 259 |
+
|
| 260 |
+
# The main ChatInterface call
|
| 261 |
+
chat_interface = gr.ChatInterface(
|
| 262 |
+
fn=respond, # The function to handle responses
|
| 263 |
+
additional_inputs=[
|
| 264 |
+
system_message_box,
|
| 265 |
+
max_tokens_slider,
|
| 266 |
+
temperature_slider,
|
| 267 |
+
top_p_slider,
|
| 268 |
+
frequency_penalty_slider,
|
| 269 |
+
seed_slider,
|
| 270 |
+
custom_model_box
|
| 271 |
+
],
|
| 272 |
+
fill_height=True, # Let the chatbot fill the container height
|
| 273 |
+
chatbot=chatbot, # The Chatbot UI component
|
| 274 |
+
theme="Nymbo/Nymbo_Theme",
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
print("Gradio interface for Chat created.")
|
| 278 |
+
|
| 279 |
+
# -----------
|
| 280 |
+
# ADDING THE "FEATURED MODELS" ACCORDION (Same logic as before)
|
| 281 |
+
# -----------
|
| 282 |
+
with gr.Accordion("Featured Models", open=False):
|
| 283 |
+
model_search_box = gr.Textbox(
|
| 284 |
+
label="Filter Models",
|
| 285 |
+
placeholder="Search for a featured model...",
|
| 286 |
+
lines=1
|
| 287 |
+
)
|
| 288 |
+
print("Model search box created.")
|
| 289 |
+
|
| 290 |
+
# Sample list of popular text models
|
| 291 |
+
models_list = [
|
| 292 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
| 293 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 294 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
| 295 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
| 296 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
| 297 |
+
"google/gemma-2-27b-it",
|
| 298 |
+
"google/gemma-2-9b-it",
|
| 299 |
+
"google/gemma-2-2b-it",
|
| 300 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 301 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 302 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 303 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
| 304 |
+
"Qwen/QwQ-32B-Preview",
|
| 305 |
+
"PowerInfer/SmallThinker-3B-Preview",
|
| 306 |
+
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
| 307 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 308 |
+
"microsoft/Phi-3.5-mini-instruct",
|
| 309 |
+
]
|
| 310 |
+
print("Models list initialized.")
|
| 311 |
+
|
| 312 |
+
featured_model_radio = gr.Radio(
|
| 313 |
+
label="Select a model below",
|
| 314 |
+
choices=models_list,
|
| 315 |
+
value="meta-llama/Llama-3.3-70B-Instruct",
|
| 316 |
+
interactive=True
|
| 317 |
+
)
|
| 318 |
+
print("Featured models radio button created.")
|
| 319 |
+
|
| 320 |
+
def filter_models(search_term):
|
| 321 |
+
print(f"Filtering models with search term: {search_term}")
|
| 322 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 323 |
+
print(f"Filtered models: {filtered}")
|
| 324 |
+
return gr.update(choices=filtered)
|
| 325 |
+
|
| 326 |
+
model_search_box.change(
|
| 327 |
+
fn=filter_models,
|
| 328 |
+
inputs=model_search_box,
|
| 329 |
+
outputs=featured_model_radio
|
| 330 |
+
)
|
| 331 |
+
print("Model search box change event linked.")
|
| 332 |
+
|
| 333 |
+
featured_model_radio.change(
|
| 334 |
+
fn=set_custom_model_from_radio,
|
| 335 |
+
inputs=featured_model_radio,
|
| 336 |
+
outputs=custom_model_box
|
| 337 |
+
)
|
| 338 |
+
print("Featured model radio button change event linked.")
|
| 339 |
|
| 340 |
print("Gradio interface initialized.")
|
| 341 |
|
| 342 |
+
# ------------------------
|
| 343 |
+
# MAIN ENTRY POINT
|
| 344 |
+
# ------------------------
|
| 345 |
if __name__ == "__main__":
|
| 346 |
print("Launching the demo application.")
|
| 347 |
demo.launch()
|