Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,9 +16,9 @@ print("OpenAI client initialized.")
|
|
| 16 |
def respond(
|
| 17 |
message,
|
| 18 |
history: list[tuple[str, str]],
|
| 19 |
-
system_message,
|
| 20 |
-
custom_model,
|
| 21 |
model,
|
|
|
|
|
|
|
| 22 |
max_tokens,
|
| 23 |
temperature,
|
| 24 |
top_p,
|
|
@@ -26,66 +26,43 @@ def respond(
|
|
| 26 |
seed
|
| 27 |
):
|
| 28 |
"""
|
| 29 |
-
This function handles the chatbot response.
|
| 30 |
-
- message: the user's new message
|
| 31 |
-
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
| 32 |
-
- system_message: the system prompt
|
| 33 |
-
- custom_model: custom model path (if any)
|
| 34 |
-
- model: selected model from featured models
|
| 35 |
-
- max_tokens: the maximum number of tokens to generate in the response
|
| 36 |
-
- temperature: sampling temperature
|
| 37 |
-
- top_p: top-p (nucleus) sampling
|
| 38 |
-
- frequency_penalty: penalize repeated tokens in the output
|
| 39 |
-
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
| 40 |
"""
|
| 41 |
-
|
| 42 |
print(f"Received message: {message}")
|
| 43 |
print(f"History: {history}")
|
| 44 |
-
print(f"
|
| 45 |
print(f"Custom model: {custom_model}")
|
| 46 |
-
print(f"
|
| 47 |
-
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 48 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 49 |
|
| 50 |
-
# Convert seed to None if -1
|
| 51 |
if seed == -1:
|
| 52 |
seed = None
|
| 53 |
|
| 54 |
-
#
|
|
|
|
|
|
|
|
|
|
| 55 |
messages = [{"role": "system", "content": system_message}]
|
| 56 |
|
| 57 |
-
# Add conversation history
|
| 58 |
for val in history:
|
| 59 |
user_part = val[0]
|
| 60 |
assistant_part = val[1]
|
| 61 |
if user_part:
|
| 62 |
messages.append({"role": "user", "content": user_part})
|
| 63 |
-
print(f"Added user message to context: {user_part}")
|
| 64 |
if assistant_part:
|
| 65 |
messages.append({"role": "assistant", "content": assistant_part})
|
| 66 |
-
print(f"Added assistant message to context: {assistant_part}")
|
| 67 |
|
| 68 |
-
# Append
|
| 69 |
messages.append({"role": "user", "content": message})
|
| 70 |
|
| 71 |
-
# Start with
|
| 72 |
response = ""
|
| 73 |
-
print("Sending request to
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
if custom_model.strip():
|
| 77 |
-
selected_model = custom_model.strip()
|
| 78 |
-
else:
|
| 79 |
-
# Map the display names to actual model paths
|
| 80 |
-
model_mapping = {
|
| 81 |
-
"Llama 2 70B": "meta-llama/Llama-2-70b-chat-hf",
|
| 82 |
-
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 83 |
-
"Zephyr 7B": "HuggingFaceH4/zephyr-7b-beta",
|
| 84 |
-
"OpenChat 3.5": "openchat/openchat-3.5-0106",
|
| 85 |
-
}
|
| 86 |
-
selected_model = model_mapping.get(model, "meta-llama/Llama-2-70b-chat-hf")
|
| 87 |
-
|
| 88 |
-
# Make the streaming request to the HF Inference API via openai-like client
|
| 89 |
for message_chunk in client.chat.completions.create(
|
| 90 |
model=selected_model,
|
| 91 |
max_tokens=max_tokens,
|
|
@@ -96,7 +73,6 @@ def respond(
|
|
| 96 |
seed=seed,
|
| 97 |
messages=messages,
|
| 98 |
):
|
| 99 |
-
# Extract the token text from the response chunk
|
| 100 |
token_text = message_chunk.choices[0].delta.content
|
| 101 |
print(f"Received token: {token_text}")
|
| 102 |
response += token_text
|
|
@@ -104,181 +80,135 @@ def respond(
|
|
| 104 |
|
| 105 |
print("Completed response generation.")
|
| 106 |
|
| 107 |
-
# Create
|
| 108 |
chatbot = gr.Chatbot(height=600)
|
| 109 |
print("Chatbot interface created.")
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
# Create the Gradio interface with tabs
|
| 112 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
| 113 |
-
with gr.
|
| 114 |
-
with gr.
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
# System Message
|
| 118 |
-
system_message = gr.Textbox(
|
| 119 |
-
value="",
|
| 120 |
-
label="System message",
|
| 121 |
-
placeholder="Enter a system message to guide the model's behavior"
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
# Model Selection Section
|
| 125 |
with gr.Accordion("Featured Models", open=True):
|
| 126 |
-
# Model Search
|
| 127 |
model_search = gr.Textbox(
|
| 128 |
label="Filter Models",
|
| 129 |
-
placeholder="Search for a
|
| 130 |
lines=1
|
| 131 |
)
|
| 132 |
-
|
| 133 |
-
# Featured Models List
|
| 134 |
-
models_list = [
|
| 135 |
-
"Llama 2 70B",
|
| 136 |
-
"Mixtral 8x7B",
|
| 137 |
-
"Zephyr 7B",
|
| 138 |
-
"OpenChat 3.5"
|
| 139 |
-
]
|
| 140 |
-
|
| 141 |
model = gr.Radio(
|
| 142 |
label="Select a model",
|
| 143 |
choices=models_list,
|
| 144 |
-
value="Llama
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
# Custom Model Input
|
| 148 |
-
custom_model = gr.Textbox(
|
| 149 |
-
label="Custom Model",
|
| 150 |
-
info="Hugging Face model path (optional)",
|
| 151 |
-
placeholder="meta-llama/Llama-2-70b-chat-hf"
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
# Function to filter models
|
| 155 |
-
def filter_models(search_term):
|
| 156 |
-
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
| 157 |
-
return gr.update(choices=filtered_models)
|
| 158 |
-
|
| 159 |
-
# Update model list when search box is used
|
| 160 |
-
model_search.change(filter_models, inputs=model_search, outputs=model)
|
| 161 |
-
|
| 162 |
-
# Generation Parameters
|
| 163 |
-
with gr.Row():
|
| 164 |
-
max_tokens = gr.Slider(
|
| 165 |
-
minimum=1,
|
| 166 |
-
maximum=4096,
|
| 167 |
-
value=512,
|
| 168 |
-
step=1,
|
| 169 |
-
label="Max new tokens"
|
| 170 |
-
)
|
| 171 |
-
temperature = gr.Slider(
|
| 172 |
-
minimum=0.1,
|
| 173 |
-
maximum=4.0,
|
| 174 |
-
value=0.7,
|
| 175 |
-
step=0.1,
|
| 176 |
-
label="Temperature"
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
with gr.Row():
|
| 180 |
-
top_p = gr.Slider(
|
| 181 |
-
minimum=0.1,
|
| 182 |
-
maximum=1.0,
|
| 183 |
-
value=0.95,
|
| 184 |
-
step=0.05,
|
| 185 |
-
label="Top-P"
|
| 186 |
-
)
|
| 187 |
-
frequency_penalty = gr.Slider(
|
| 188 |
-
minimum=-2.0,
|
| 189 |
-
maximum=2.0,
|
| 190 |
-
value=0.0,
|
| 191 |
-
step=0.1,
|
| 192 |
-
label="Frequency Penalty"
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
with gr.Row():
|
| 196 |
-
seed = gr.Slider(
|
| 197 |
-
minimum=-1,
|
| 198 |
-
maximum=65535,
|
| 199 |
-
value=-1,
|
| 200 |
-
step=1,
|
| 201 |
-
label="Seed (-1 for random)"
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
# Information Tab
|
| 205 |
-
with gr.Tab("Information"):
|
| 206 |
-
# Featured Models Table
|
| 207 |
-
with gr.Accordion("Featured Models", open=True):
|
| 208 |
-
gr.HTML(
|
| 209 |
-
"""
|
| 210 |
-
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-to-text">See all available models</a></p>
|
| 211 |
-
<table style="width:100%; text-align:center; margin:auto;">
|
| 212 |
-
<tr>
|
| 213 |
-
<th>Model Name</th>
|
| 214 |
-
<th>Size</th>
|
| 215 |
-
<th>Notes</th>
|
| 216 |
-
</tr>
|
| 217 |
-
<tr>
|
| 218 |
-
<td>Llama 2 70B</td>
|
| 219 |
-
<td>70B</td>
|
| 220 |
-
<td>Meta's flagship model</td>
|
| 221 |
-
</tr>
|
| 222 |
-
<tr>
|
| 223 |
-
<td>Mixtral 8x7B</td>
|
| 224 |
-
<td>47B</td>
|
| 225 |
-
<td>Mistral AI's MoE model</td>
|
| 226 |
-
</tr>
|
| 227 |
-
<tr>
|
| 228 |
-
<td>Zephyr 7B</td>
|
| 229 |
-
<td>7B</td>
|
| 230 |
-
<td>Efficient fine-tuned model</td>
|
| 231 |
-
</tr>
|
| 232 |
-
<tr>
|
| 233 |
-
<td>OpenChat 3.5</td>
|
| 234 |
-
<td>7B</td>
|
| 235 |
-
<td>High performance chat model</td>
|
| 236 |
-
</tr>
|
| 237 |
-
</table>
|
| 238 |
-
"""
|
| 239 |
)
|
| 240 |
|
| 241 |
-
#
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
## Max New Tokens
|
| 249 |
-
Controls the maximum length of the generated response. Higher values allow for longer outputs but may take more time.
|
| 250 |
-
|
| 251 |
-
## Temperature
|
| 252 |
-
Controls randomness in the output:
|
| 253 |
-
- Lower values (0.1-0.5): More focused and deterministic
|
| 254 |
-
- Higher values (0.7-1.0): More creative and diverse
|
| 255 |
-
- Very high values (>1.0): More random and potentially chaotic
|
| 256 |
-
|
| 257 |
-
## Top-P (Nucleus Sampling)
|
| 258 |
-
Controls the cumulative probability threshold for token selection:
|
| 259 |
-
- Lower values: More focused on highly likely tokens
|
| 260 |
-
- Higher values: Considers a wider range of possibilities
|
| 261 |
-
|
| 262 |
-
## Frequency Penalty
|
| 263 |
-
Adjusts the likelihood of token repetition:
|
| 264 |
-
- Negative values: May encourage repetition
|
| 265 |
-
- Zero: Neutral
|
| 266 |
-
- Positive values: Discourages repetition
|
| 267 |
-
|
| 268 |
-
## Seed
|
| 269 |
-
A number that controls the randomness in generation:
|
| 270 |
-
- -1: Random seed each time
|
| 271 |
-
- Fixed value: Reproducible outputs with same parameters
|
| 272 |
-
"""
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
# Set up the chat interface
|
| 276 |
-
chatbot = gr.Chatbot(height=600)
|
| 277 |
-
msg = gr.Textbox(label="Message")
|
| 278 |
-
|
| 279 |
-
clear = gr.ClearButton([msg, chatbot])
|
| 280 |
-
|
| 281 |
-
msg.submit(respond, [msg, chatbot, system_message, custom_model, model, max_tokens, temperature, top_p, frequency_penalty, seed], [chatbot, msg])
|
| 282 |
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def respond(
|
| 17 |
message,
|
| 18 |
history: list[tuple[str, str]],
|
|
|
|
|
|
|
| 19 |
model,
|
| 20 |
+
custom_model,
|
| 21 |
+
system_message,
|
| 22 |
max_tokens,
|
| 23 |
temperature,
|
| 24 |
top_p,
|
|
|
|
| 26 |
seed
|
| 27 |
):
|
| 28 |
"""
|
| 29 |
+
This function handles the chatbot response.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
"""
|
|
|
|
| 31 |
print(f"Received message: {message}")
|
| 32 |
print(f"History: {history}")
|
| 33 |
+
print(f"Model: {model}")
|
| 34 |
print(f"Custom model: {custom_model}")
|
| 35 |
+
print(f"System message: {system_message}")
|
| 36 |
+
print(f"Parameters - Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 37 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 38 |
|
| 39 |
+
# Convert seed to None if -1
|
| 40 |
if seed == -1:
|
| 41 |
seed = None
|
| 42 |
|
| 43 |
+
# Set the model based on selection or custom input
|
| 44 |
+
selected_model = custom_model.strip() if custom_model.strip() != "" else model
|
| 45 |
+
|
| 46 |
+
# Construct messages array
|
| 47 |
messages = [{"role": "system", "content": system_message}]
|
| 48 |
|
| 49 |
+
# Add conversation history
|
| 50 |
for val in history:
|
| 51 |
user_part = val[0]
|
| 52 |
assistant_part = val[1]
|
| 53 |
if user_part:
|
| 54 |
messages.append({"role": "user", "content": user_part})
|
|
|
|
| 55 |
if assistant_part:
|
| 56 |
messages.append({"role": "assistant", "content": assistant_part})
|
|
|
|
| 57 |
|
| 58 |
+
# Append latest message
|
| 59 |
messages.append({"role": "user", "content": message})
|
| 60 |
|
| 61 |
+
# Start with empty response
|
| 62 |
response = ""
|
| 63 |
+
print("Sending request to API.")
|
| 64 |
|
| 65 |
+
# Make the streaming request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
for message_chunk in client.chat.completions.create(
|
| 67 |
model=selected_model,
|
| 68 |
max_tokens=max_tokens,
|
|
|
|
| 73 |
seed=seed,
|
| 74 |
messages=messages,
|
| 75 |
):
|
|
|
|
| 76 |
token_text = message_chunk.choices[0].delta.content
|
| 77 |
print(f"Received token: {token_text}")
|
| 78 |
response += token_text
|
|
|
|
| 80 |
|
| 81 |
print("Completed response generation.")
|
| 82 |
|
| 83 |
+
# Create Chatbot component
|
| 84 |
chatbot = gr.Chatbot(height=600)
|
| 85 |
print("Chatbot interface created.")
|
| 86 |
|
| 87 |
+
# Define available models
|
| 88 |
+
models_list = [
|
| 89 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
| 90 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
| 91 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 92 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 93 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
# Create the Gradio interface with tabs
|
| 97 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
| 98 |
+
with gr.Tab("Chat"):
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column():
|
| 101 |
+
# Model selection accordion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
with gr.Accordion("Featured Models", open=True):
|
|
|
|
| 103 |
model_search = gr.Textbox(
|
| 104 |
label="Filter Models",
|
| 105 |
+
placeholder="Search for a model...",
|
| 106 |
lines=1
|
| 107 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
model = gr.Radio(
|
| 109 |
label="Select a model",
|
| 110 |
choices=models_list,
|
| 111 |
+
value="meta-llama/Llama-2-70b-chat-hf"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
)
|
| 113 |
|
| 114 |
+
# Custom model input
|
| 115 |
+
custom_model = gr.Textbox(
|
| 116 |
+
label="Custom Model",
|
| 117 |
+
info="Enter Hugging Face model path (optional)",
|
| 118 |
+
placeholder="organization/model-name"
|
| 119 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# System message and parameters
|
| 122 |
+
system_message = gr.Textbox(label="System message")
|
| 123 |
+
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
|
| 124 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
| 125 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
| 126 |
+
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
| 127 |
+
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
| 128 |
+
|
| 129 |
+
with gr.Tab("Information"):
|
| 130 |
+
with gr.Accordion("Featured Models", open=False):
|
| 131 |
+
gr.HTML("""
|
| 132 |
+
<p><a href="https://huggingface.co/models?pipeline_tag=text-generation&sort=trending">See all available models</a></p>
|
| 133 |
+
<table style="width:100%; text-align:center; margin:auto;">
|
| 134 |
+
<tr>
|
| 135 |
+
<th>Model Name</th>
|
| 136 |
+
<th>Parameters</th>
|
| 137 |
+
<th>Notes</th>
|
| 138 |
+
</tr>
|
| 139 |
+
<tr>
|
| 140 |
+
<td>Llama-2-70b-chat</td>
|
| 141 |
+
<td>70B</td>
|
| 142 |
+
<td>Meta's largest chat model</td>
|
| 143 |
+
</tr>
|
| 144 |
+
<tr>
|
| 145 |
+
<td>Mixtral-8x7B</td>
|
| 146 |
+
<td>47B</td>
|
| 147 |
+
<td>Mixture of Experts architecture</td>
|
| 148 |
+
</tr>
|
| 149 |
+
<tr>
|
| 150 |
+
<td>Mistral-7B</td>
|
| 151 |
+
<td>7B</td>
|
| 152 |
+
<td>Efficient base model</td>
|
| 153 |
+
</tr>
|
| 154 |
+
</table>
|
| 155 |
+
""")
|
| 156 |
+
|
| 157 |
+
with gr.Accordion("Parameters Overview", open=False):
|
| 158 |
+
gr.Markdown("""
|
| 159 |
+
## System Message
|
| 160 |
+
The system message sets the context and behavior for the AI assistant. It's like giving it a role or specific instructions.
|
| 161 |
+
|
| 162 |
+
## Max New Tokens
|
| 163 |
+
Controls the maximum length of the generated response. Higher values allow for longer responses but take more time.
|
| 164 |
+
|
| 165 |
+
## Temperature
|
| 166 |
+
Controls randomness in the response:
|
| 167 |
+
- Lower (0.1-0.5): More focused and deterministic
|
| 168 |
+
- Higher (0.7-1.0): More creative and varied
|
| 169 |
+
|
| 170 |
+
## Top-P
|
| 171 |
+
Nucleus sampling parameter:
|
| 172 |
+
- Lower values: More focused on likely tokens
|
| 173 |
+
- Higher values: More diverse vocabulary usage
|
| 174 |
+
|
| 175 |
+
## Frequency Penalty
|
| 176 |
+
Discourages repetition:
|
| 177 |
+
- Negative: May allow more repetition
|
| 178 |
+
- Positive: Encourages more diverse word choice
|
| 179 |
+
|
| 180 |
+
## Seed
|
| 181 |
+
Controls randomness initialization:
|
| 182 |
+
- -1: Random seed each time
|
| 183 |
+
- Fixed value: Reproducible outputs
|
| 184 |
+
""")
|
| 185 |
+
|
| 186 |
+
# Function to filter models based on search
|
| 187 |
+
def filter_models(search_term):
|
| 188 |
+
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
| 189 |
+
return gr.update(choices=filtered_models)
|
| 190 |
+
|
| 191 |
+
# Connect the search box to the model filter function
|
| 192 |
+
model_search.change(filter_models, inputs=model_search, outputs=model)
|
| 193 |
+
|
| 194 |
+
# Create the chat interface
|
| 195 |
+
chat_interface = gr.ChatInterface(
|
| 196 |
+
respond,
|
| 197 |
+
additional_inputs=[
|
| 198 |
+
model,
|
| 199 |
+
custom_model,
|
| 200 |
+
system_message,
|
| 201 |
+
max_tokens,
|
| 202 |
+
temperature,
|
| 203 |
+
top_p,
|
| 204 |
+
frequency_penalty,
|
| 205 |
+
seed,
|
| 206 |
+
],
|
| 207 |
+
chatbot=chatbot,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
print("Gradio interface initialized.")
|
| 211 |
+
|
| 212 |
+
if __name__ == "__main__":
|
| 213 |
+
print("Launching the demo application.")
|
| 214 |
+
demo.launch(show_api=False, share=False)
|