Spaces:
Running
Running
custom models
Browse files
app.py
CHANGED
|
@@ -21,7 +21,8 @@ def respond(
|
|
| 21 |
temperature,
|
| 22 |
top_p,
|
| 23 |
frequency_penalty,
|
| 24 |
-
seed
|
|
|
|
| 25 |
):
|
| 26 |
"""
|
| 27 |
This function handles the chatbot response. It takes in:
|
|
@@ -33,6 +34,7 @@ def respond(
|
|
| 33 |
- top_p: top-p (nucleus) sampling
|
| 34 |
- frequency_penalty: penalize repeated tokens in the output
|
| 35 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
|
|
|
| 36 |
"""
|
| 37 |
|
| 38 |
print(f"Received message: {message}")
|
|
@@ -40,6 +42,7 @@ def respond(
|
|
| 40 |
print(f"System message: {system_message}")
|
| 41 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 42 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
|
|
| 43 |
|
| 44 |
# Convert seed to None if -1 (meaning random)
|
| 45 |
if seed == -1:
|
|
@@ -62,26 +65,30 @@ def respond(
|
|
| 62 |
# Append the latest user message
|
| 63 |
messages.append({"role": "user", "content": message})
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
# Start with an empty string to build the response as tokens stream in
|
| 66 |
response = ""
|
| 67 |
print("Sending request to OpenAI API.")
|
| 68 |
|
| 69 |
# Make the streaming request to the HF Inference API via openai-like client
|
| 70 |
for message_chunk in client.chat.completions.create(
|
| 71 |
-
model=
|
| 72 |
max_tokens=max_tokens,
|
| 73 |
-
stream=True,
|
| 74 |
temperature=temperature,
|
| 75 |
top_p=top_p,
|
| 76 |
-
frequency_penalty=frequency_penalty,
|
| 77 |
-
seed=seed,
|
| 78 |
messages=messages,
|
| 79 |
):
|
| 80 |
# Extract the token text from the response chunk
|
| 81 |
token_text = message_chunk.choices[0].delta.content
|
| 82 |
print(f"Received token: {token_text}")
|
| 83 |
response += token_text
|
| 84 |
-
#
|
| 85 |
yield response
|
| 86 |
|
| 87 |
print("Completed response generation.")
|
|
@@ -90,69 +97,57 @@ def respond(
|
|
| 90 |
chatbot = gr.Chatbot(height=600)
|
| 91 |
print("Chatbot interface created.")
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
temperature,
|
| 145 |
-
top_p,
|
| 146 |
-
frequency_penalty,
|
| 147 |
-
seed
|
| 148 |
-
],
|
| 149 |
-
fill_height=True,
|
| 150 |
-
chatbot=chatbot,
|
| 151 |
-
theme="Nymbo/Nymbo_Theme",
|
| 152 |
-
title="Serverless-TextGen-Hub",
|
| 153 |
-
description="A comprehensive UI for text generation using the HF Inference API."
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
print("Gradio interface initialized.")
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|
|
|
|
| 21 |
temperature,
|
| 22 |
top_p,
|
| 23 |
frequency_penalty,
|
| 24 |
+
seed,
|
| 25 |
+
custom_model
|
| 26 |
):
|
| 27 |
"""
|
| 28 |
This function handles the chatbot response. It takes in:
|
|
|
|
| 34 |
- top_p: top-p (nucleus) sampling
|
| 35 |
- frequency_penalty: penalize repeated tokens in the output
|
| 36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
| 37 |
+
- custom_model: the user-provided custom model name (if any)
|
| 38 |
"""
|
| 39 |
|
| 40 |
print(f"Received message: {message}")
|
|
|
|
| 42 |
print(f"System message: {system_message}")
|
| 43 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 45 |
+
print(f"Custom model: {custom_model}")
|
| 46 |
|
| 47 |
# Convert seed to None if -1 (meaning random)
|
| 48 |
if seed == -1:
|
|
|
|
| 65 |
# Append the latest user message
|
| 66 |
messages.append({"role": "user", "content": message})
|
| 67 |
|
| 68 |
+
# Determine which model to use: either custom_model or a default
|
| 69 |
+
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
| 70 |
+
print(f"Model selected for inference: {model_to_use}")
|
| 71 |
+
|
| 72 |
# Start with an empty string to build the response as tokens stream in
|
| 73 |
response = ""
|
| 74 |
print("Sending request to OpenAI API.")
|
| 75 |
|
| 76 |
# Make the streaming request to the HF Inference API via openai-like client
|
| 77 |
for message_chunk in client.chat.completions.create(
|
| 78 |
+
model=model_to_use, # Use either the user-provided custom model or default
|
| 79 |
max_tokens=max_tokens,
|
| 80 |
+
stream=True, # Stream the response
|
| 81 |
temperature=temperature,
|
| 82 |
top_p=top_p,
|
| 83 |
+
frequency_penalty=frequency_penalty,
|
| 84 |
+
seed=seed,
|
| 85 |
messages=messages,
|
| 86 |
):
|
| 87 |
# Extract the token text from the response chunk
|
| 88 |
token_text = message_chunk.choices[0].delta.content
|
| 89 |
print(f"Received token: {token_text}")
|
| 90 |
response += token_text
|
| 91 |
+
# Yield the partial response to Gradio so it can display in real-time
|
| 92 |
yield response
|
| 93 |
|
| 94 |
print("Completed response generation.")
|
|
|
|
| 97 |
chatbot = gr.Chatbot(height=600)
|
| 98 |
print("Chatbot interface created.")
|
| 99 |
|
| 100 |
+
# Create the Gradio ChatInterface
|
| 101 |
+
# We add two new sliders for Frequency Penalty, Seed, and now a new "Custom Model" text box.
|
| 102 |
+
demo = gr.ChatInterface(
|
| 103 |
+
fn=respond,
|
| 104 |
+
additional_inputs=[
|
| 105 |
+
gr.Textbox(value="", label="System message"),
|
| 106 |
+
gr.Slider(
|
| 107 |
+
minimum=1,
|
| 108 |
+
maximum=4096,
|
| 109 |
+
value=512,
|
| 110 |
+
step=1,
|
| 111 |
+
label="Max new tokens"
|
| 112 |
+
),
|
| 113 |
+
gr.Slider(
|
| 114 |
+
minimum=0.1,
|
| 115 |
+
maximum=4.0,
|
| 116 |
+
value=0.7,
|
| 117 |
+
step=0.1,
|
| 118 |
+
label="Temperature"
|
| 119 |
+
),
|
| 120 |
+
gr.Slider(
|
| 121 |
+
minimum=0.1,
|
| 122 |
+
maximum=1.0,
|
| 123 |
+
value=0.95,
|
| 124 |
+
step=0.05,
|
| 125 |
+
label="Top-P"
|
| 126 |
+
),
|
| 127 |
+
gr.Slider(
|
| 128 |
+
minimum=-2.0,
|
| 129 |
+
maximum=2.0,
|
| 130 |
+
value=0.0,
|
| 131 |
+
step=0.1,
|
| 132 |
+
label="Frequency Penalty"
|
| 133 |
+
),
|
| 134 |
+
gr.Slider(
|
| 135 |
+
minimum=-1,
|
| 136 |
+
maximum=65535, # Arbitrary upper limit for demonstration
|
| 137 |
+
value=-1,
|
| 138 |
+
step=1,
|
| 139 |
+
label="Seed (-1 for random)"
|
| 140 |
+
),
|
| 141 |
+
gr.Textbox(
|
| 142 |
+
value="",
|
| 143 |
+
label="Custom Model",
|
| 144 |
+
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty."
|
| 145 |
+
),
|
| 146 |
+
],
|
| 147 |
+
fill_height=True,
|
| 148 |
+
chatbot=chatbot,
|
| 149 |
+
theme="Nymbo/Nymbo_Theme",
|
| 150 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
print("Gradio interface initialized.")
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|