Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,31 @@ import gradio as gr
|
|
| 2 |
from openai import OpenAI
|
| 3 |
import os
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 6 |
-
|
| 7 |
|
| 8 |
client = OpenAI(
|
| 9 |
base_url="https://api-inference.huggingface.co/v1/",
|
| 10 |
api_key=ACCESS_TOKEN,
|
| 11 |
)
|
| 12 |
-
|
| 13 |
|
| 14 |
|
| 15 |
def respond(
|
|
@@ -24,19 +41,19 @@ def respond(
|
|
| 24 |
custom_model
|
| 25 |
):
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
# Convert seed to None if -1 (meaning random)
|
| 35 |
if seed == -1:
|
| 36 |
seed = None
|
| 37 |
|
| 38 |
messages = [{"role": "system", "content": system_message}]
|
| 39 |
-
|
| 40 |
|
| 41 |
# Add conversation history to the context
|
| 42 |
for val in history:
|
|
@@ -44,22 +61,22 @@ def respond(
|
|
| 44 |
assistant_part = val[1]
|
| 45 |
if user_part:
|
| 46 |
messages.append({"role": "user", "content": user_part})
|
| 47 |
-
|
| 48 |
if assistant_part:
|
| 49 |
messages.append({"role": "assistant", "content": assistant_part})
|
| 50 |
-
|
| 51 |
|
| 52 |
# Append the latest user message
|
| 53 |
messages.append({"role": "user", "content": message})
|
| 54 |
-
|
| 55 |
|
| 56 |
# If user provided a model, use that; otherwise, fall back to a default model
|
| 57 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
| 58 |
-
|
| 59 |
|
| 60 |
# Start with an empty string to build the response as tokens stream in
|
| 61 |
response = ""
|
| 62 |
-
|
| 63 |
|
| 64 |
for message_chunk in client.chat.completions.create(
|
| 65 |
model=model_to_use,
|
|
@@ -72,16 +89,16 @@ def respond(
|
|
| 72 |
messages=messages,
|
| 73 |
):
|
| 74 |
token_text = message_chunk.choices[0].delta.content
|
| 75 |
-
|
| 76 |
response += token_text
|
| 77 |
yield response
|
| 78 |
|
| 79 |
-
|
| 80 |
|
| 81 |
# GRADIO UI
|
| 82 |
|
| 83 |
-
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
|
| 84 |
-
|
| 85 |
|
| 86 |
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
| 87 |
|
|
@@ -130,11 +147,7 @@ custom_model_box = gr.Textbox(
|
|
| 130 |
)
|
| 131 |
|
| 132 |
def set_custom_model_from_radio(selected):
|
| 133 |
-
""
|
| 134 |
-
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
| 135 |
-
We will update the Custom Model text box with that selection automatically.
|
| 136 |
-
"""
|
| 137 |
-
print(f"Featured model selected: {selected}")
|
| 138 |
return selected
|
| 139 |
|
| 140 |
demo = gr.ChatInterface(
|
|
@@ -152,7 +165,7 @@ demo = gr.ChatInterface(
|
|
| 152 |
chatbot=chatbot,
|
| 153 |
theme="Nymbo/Nymbo_Theme",
|
| 154 |
)
|
| 155 |
-
|
| 156 |
|
| 157 |
with demo:
|
| 158 |
with gr.Accordion("Model Selection", open=False):
|
|
@@ -161,7 +174,7 @@ with demo:
|
|
| 161 |
placeholder="Search for a featured model...",
|
| 162 |
lines=1
|
| 163 |
)
|
| 164 |
-
|
| 165 |
|
| 166 |
models_list = [
|
| 167 |
"meta-llama/Llama-3.3-70B-Instruct",
|
|
@@ -182,7 +195,7 @@ with demo:
|
|
| 182 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 183 |
"microsoft/Phi-3.5-mini-instruct",
|
| 184 |
]
|
| 185 |
-
|
| 186 |
|
| 187 |
featured_model_radio = gr.Radio(
|
| 188 |
label="Select a model below",
|
|
@@ -190,12 +203,12 @@ with demo:
|
|
| 190 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
| 191 |
interactive=True
|
| 192 |
)
|
| 193 |
-
|
| 194 |
|
| 195 |
def filter_models(search_term):
|
| 196 |
-
|
| 197 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 198 |
-
|
| 199 |
return gr.update(choices=filtered)
|
| 200 |
|
| 201 |
model_search_box.change(
|
|
@@ -203,17 +216,17 @@ with demo:
|
|
| 203 |
inputs=model_search_box,
|
| 204 |
outputs=featured_model_radio
|
| 205 |
)
|
| 206 |
-
|
| 207 |
|
| 208 |
featured_model_radio.change(
|
| 209 |
fn=set_custom_model_from_radio,
|
| 210 |
inputs=featured_model_radio,
|
| 211 |
outputs=custom_model_box
|
| 212 |
)
|
| 213 |
-
|
| 214 |
|
| 215 |
-
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|
| 218 |
-
|
| 219 |
demo.launch()
|
|
|
|
| 2 |
from openai import OpenAI
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
# A helper function to show pop-up (toast) messages in the Gradio interface
|
| 6 |
+
# and also keep them in the console for debugging.
|
| 7 |
+
# Note: gr.toast() only works during or after a Gradio event has started.
|
| 8 |
+
# If this code runs at the global level (on import), the pop-ups may
|
| 9 |
+
# not appear. They *will* appear for any messages triggered during
|
| 10 |
+
# a Gradio event (e.g. when the user sends a message).
|
| 11 |
+
|
| 12 |
+
def show_loading_status(msg):
|
| 13 |
+
# Attempt to show pop-up via gr.toast (works when called inside a running Gradio event).
|
| 14 |
+
try:
|
| 15 |
+
gr.toast(msg)
|
| 16 |
+
except:
|
| 17 |
+
# If gr.toast() fails (e.g. called outside of an event), just ignore or pass
|
| 18 |
+
pass
|
| 19 |
+
# Also print to console for debugging
|
| 20 |
+
print(msg)
|
| 21 |
+
|
| 22 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 23 |
+
show_loading_status("Access token loaded.")
|
| 24 |
|
| 25 |
client = OpenAI(
|
| 26 |
base_url="https://api-inference.huggingface.co/v1/",
|
| 27 |
api_key=ACCESS_TOKEN,
|
| 28 |
)
|
| 29 |
+
show_loading_status("OpenAI client initialized.")
|
| 30 |
|
| 31 |
|
| 32 |
def respond(
|
|
|
|
| 41 |
custom_model
|
| 42 |
):
|
| 43 |
|
| 44 |
+
show_loading_status(f"Received message: {message}")
|
| 45 |
+
show_loading_status(f"History: {history}")
|
| 46 |
+
show_loading_status(f"System message: {system_message}")
|
| 47 |
+
show_loading_status(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 48 |
+
show_loading_status(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 49 |
+
show_loading_status(f"Selected model (custom_model): {custom_model}")
|
| 50 |
|
| 51 |
# Convert seed to None if -1 (meaning random)
|
| 52 |
if seed == -1:
|
| 53 |
seed = None
|
| 54 |
|
| 55 |
messages = [{"role": "system", "content": system_message}]
|
| 56 |
+
show_loading_status("Initial messages array constructed.")
|
| 57 |
|
| 58 |
# Add conversation history to the context
|
| 59 |
for val in history:
|
|
|
|
| 61 |
assistant_part = val[1]
|
| 62 |
if user_part:
|
| 63 |
messages.append({"role": "user", "content": user_part})
|
| 64 |
+
show_loading_status(f"Added user message to context: {user_part}")
|
| 65 |
if assistant_part:
|
| 66 |
messages.append({"role": "assistant", "content": assistant_part})
|
| 67 |
+
show_loading_status(f"Added assistant message to context: {assistant_part}")
|
| 68 |
|
| 69 |
# Append the latest user message
|
| 70 |
messages.append({"role": "user", "content": message})
|
| 71 |
+
show_loading_status("Latest user message appended.")
|
| 72 |
|
| 73 |
# If user provided a model, use that; otherwise, fall back to a default model
|
| 74 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
| 75 |
+
show_loading_status(f"Model selected for inference: {model_to_use}")
|
| 76 |
|
| 77 |
# Start with an empty string to build the response as tokens stream in
|
| 78 |
response = ""
|
| 79 |
+
show_loading_status("Sending request to OpenAI API.")
|
| 80 |
|
| 81 |
for message_chunk in client.chat.completions.create(
|
| 82 |
model=model_to_use,
|
|
|
|
| 89 |
messages=messages,
|
| 90 |
):
|
| 91 |
token_text = message_chunk.choices[0].delta.content
|
| 92 |
+
show_loading_status(f"Received token: {token_text}")
|
| 93 |
response += token_text
|
| 94 |
yield response
|
| 95 |
|
| 96 |
+
show_loading_status("Completed response generation.")
|
| 97 |
|
| 98 |
# GRADIO UI
|
| 99 |
|
| 100 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
|
| 101 |
+
show_loading_status("Chatbot interface created.")
|
| 102 |
|
| 103 |
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
| 104 |
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
def set_custom_model_from_radio(selected):
|
| 150 |
+
show_loading_status(f"Featured model selected: {selected}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
return selected
|
| 152 |
|
| 153 |
demo = gr.ChatInterface(
|
|
|
|
| 165 |
chatbot=chatbot,
|
| 166 |
theme="Nymbo/Nymbo_Theme",
|
| 167 |
)
|
| 168 |
+
show_loading_status("ChatInterface object created.")
|
| 169 |
|
| 170 |
with demo:
|
| 171 |
with gr.Accordion("Model Selection", open=False):
|
|
|
|
| 174 |
placeholder="Search for a featured model...",
|
| 175 |
lines=1
|
| 176 |
)
|
| 177 |
+
show_loading_status("Model search box created.")
|
| 178 |
|
| 179 |
models_list = [
|
| 180 |
"meta-llama/Llama-3.3-70B-Instruct",
|
|
|
|
| 195 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 196 |
"microsoft/Phi-3.5-mini-instruct",
|
| 197 |
]
|
| 198 |
+
show_loading_status("Models list initialized.")
|
| 199 |
|
| 200 |
featured_model_radio = gr.Radio(
|
| 201 |
label="Select a model below",
|
|
|
|
| 203 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
| 204 |
interactive=True
|
| 205 |
)
|
| 206 |
+
show_loading_status("Featured models radio button created.")
|
| 207 |
|
| 208 |
def filter_models(search_term):
|
| 209 |
+
show_loading_status(f"Filtering models with search term: {search_term}")
|
| 210 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 211 |
+
show_loading_status(f"Filtered models: {filtered}")
|
| 212 |
return gr.update(choices=filtered)
|
| 213 |
|
| 214 |
model_search_box.change(
|
|
|
|
| 216 |
inputs=model_search_box,
|
| 217 |
outputs=featured_model_radio
|
| 218 |
)
|
| 219 |
+
show_loading_status("Model search box change event linked.")
|
| 220 |
|
| 221 |
featured_model_radio.change(
|
| 222 |
fn=set_custom_model_from_radio,
|
| 223 |
inputs=featured_model_radio,
|
| 224 |
outputs=custom_model_box
|
| 225 |
)
|
| 226 |
+
show_loading_status("Featured model radio button change event linked.")
|
| 227 |
|
| 228 |
+
show_loading_status("Gradio interface initialized.")
|
| 229 |
|
| 230 |
if __name__ == "__main__":
|
| 231 |
+
show_loading_status("Launching the demo application.")
|
| 232 |
demo.launch()
|