Spaces:
Running
Running
File size: 17,196 Bytes
26ed6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import time
import tempfile
import uuid
# Access token from environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
def generate_video(
prompt,
negative_prompt,
num_frames,
fps,
width,
height,
num_inference_steps,
guidance_scale,
motion_bucket_id,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
"""Generate a video based on the provided parameters"""
print(f"Received prompt: {prompt}")
print(f"Negative prompt: {negative_prompt}")
print(f"Num frames: {num_frames}, FPS: {fps}")
print(f"Width: {width}, Height: {height}")
print(f"Steps: {num_inference_steps}, Guidance Scale: {guidance_scale}")
print(f"Motion Bucket ID: {motion_bucket_id}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Determine which token to use - custom API key if provided, otherwise the ACCESS_TOKEN
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
# Log which token source we're using (without printing the actual token)
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
# Initialize the Inference Client with the provider and appropriate token
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
else:
# Ensure seed is an integer
seed = int(seed)
# Determine which model to use, prioritizing custom_model if provided
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
# Create a unique ID for this generation
generation_id = uuid.uuid4().hex[:8]
print(f"Generation ID: {generation_id}")
# Prepare parameters for the video generation request
# Note: Different providers may have different parameter requirements
parameters = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"num_frames": num_frames,
"fps": fps,
"width": width,
"height": height,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
}
# Add motion_bucket_id if applicable (depends on the model)
if motion_bucket_id is not None:
parameters["motion_bucket_id"] = motion_bucket_id
# Add seed if specified
if seed is not None:
parameters["seed"] = seed
# For FalAI provider - may need specific formatting
if provider == "fal-ai":
print("Using FalAI provider, adapting parameters...")
# FalAI might use different parameter formats or additional settings
parameters = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"num_frames": num_frames,
"seed": seed if seed is not None else -1,
"width": width,
"height": height,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
}
# For Novita provider - may need specific formatting
if provider == "novita":
print("Using Novita provider, adapting parameters...")
# Based on documentation, Novita uses text_to_video method
try:
# For Novita, we use a different method from the InferenceClient
video_data = client.text_to_video(
prompt=prompt,
model=model_to_use,
negative_prompt=negative_prompt,
num_frames=num_frames,
fps=fps,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed
)
# Save the video to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
temp_file.write(video_data)
video_path = temp_file.name
temp_file.close()
print(f"Video saved to temporary file: {video_path}")
return video_path
except Exception as e:
print(f"Error during Novita video generation: {e}")
return f"Error: {str(e)}"
# For Replicate provider - may need specific formatting
if provider == "replicate":
print("Using Replicate provider, adapting parameters...")
# Replicate might use different parameter formats
try:
# For Replicate, we use their specific method structure
response = client.post(
model=model_to_use,
input={
"prompt": prompt,
"negative_prompt": negative_prompt,
"num_frames": num_frames,
"fps": fps,
"width": width,
"height": height,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"seed": seed if seed is not None else 0,
},
)
# Replicate typically returns a URL to the generated video
if isinstance(response, dict) and "output" in response:
video_url = response["output"]
print(f"Video generated, URL: {video_url}")
return video_url
else:
return str(response)
except Exception as e:
print(f"Error during Replicate video generation: {e}")
return f"Error: {str(e)}"
# General approach for other providers
try:
print(f"Sending request to {provider} provider with model {model_to_use}.")
print(f"Parameters: {parameters}")
# Use the text_to_video method of the InferenceClient
video_data = client.text_to_video(
prompt=prompt,
model=model_to_use,
**parameters
)
# Save the video to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
temp_file.write(video_data)
video_path = temp_file.name
temp_file.close()
print(f"Video saved to temporary file: {video_path}")
return video_path
except Exception as e:
print(f"Error during video generation: {e}")
return f"Error: {str(e)}"
# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
# If no custom API key is provided, only "hf-inference" can be used
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# Define the GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Set a title for the application
gr.Markdown("# 🎬 Serverless-VideoGen-Hub")
gr.Markdown("Generate videos using Hugging Face Serverless Inference")
with gr.Row():
with gr.Column(scale=2):
# Main video output area
video_output = gr.Video(label="Generated Video", height=400)
# Basic input components
prompt_box = gr.Textbox(
value="A beautiful sunset over a calm ocean",
placeholder="Enter a prompt for your video",
label="Prompt",
lines=3
)
# Generate button
generate_button = gr.Button("🎬 Generate Video", variant="primary")
with gr.Column(scale=1):
# Model selection components
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a model...",
lines=1
)
models_list = [
"stabilityai/stable-video-diffusion-img2vid-xt",
"stabilityai/stable-video-diffusion-img2vid",
"damo-vilab/text-to-video-ms-1.7b",
"tencent/HunyuanVideo",
"Wan-AI/Wan2.1-T2V-14B",
"PixArt-alpha/PixArt-sigma-vid",
"strangerbytesxyz/motion-animator-diffusion-video"
]
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="stabilityai/stable-video-diffusion-img2vid",
interactive=True
)
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="damo-vilab/text-to-video-ms-1.7b"
)
# Advanced settings in an accordion
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column():
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What should NOT be in the video",
value="poor quality, distortion, blurry, low resolution, grainy",
lines=2
)
with gr.Row():
width = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Width"
)
height = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Height"
)
with gr.Row():
num_frames = gr.Slider(
minimum=8,
maximum=64,
value=16,
step=1,
label="Number of Frames"
)
fps = gr.Slider(
minimum=1,
maximum=30,
value=8,
step=1,
label="Frames Per Second"
)
with gr.Column():
with gr.Row():
num_inference_steps = gr.Slider(
minimum=1,
maximum=100,
value=25,
step=1,
label="Inference Steps"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="Guidance Scale"
)
with gr.Row():
motion_bucket_id = gr.Slider(
minimum=1,
maximum=255,
value=127,
step=1,
label="Motion Bucket ID (for SVD models)"
)
seed = gr.Slider(
minimum=-1,
maximum=2147483647,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection
providers_list = [
"hf-inference", # Default Hugging Face Inference
"fal-ai", # Fal AI provider
"novita", # Novita provider
"replicate", # Replicate provider
]
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
info="Select an inference provider. Note: Requires provider-specific API key except for hf-inference"
)
# BYOK textbox
byok_textbox = gr.Textbox(
value="",
label="BYOK (Bring Your Own Key)",
info="Enter a provider API key here. When empty, only 'hf-inference' provider can be used.",
placeholder="Enter your provider API token",
type="password" # Hide the API key for security
)
# Set up the generation click event
generate_button.click(
fn=generate_video,
inputs=[
prompt_box,
negative_prompt,
num_frames,
fps,
width,
height,
num_inference_steps,
guidance_scale,
motion_bucket_id,
seed,
provider_radio,
byok_textbox,
custom_model_box,
model_search_box,
featured_model_radio
],
outputs=video_output
)
# Connect the model filter to update the radio choices
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
# Connect the featured model radio to update the custom model box
def set_custom_model_from_radio(selected):
"""
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
We will update the Custom Model text box with that selection automatically.
"""
print(f"Featured model selected: {selected}")
return selected
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
# Connect the BYOK textbox to validate provider selection
byok_textbox.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
# Also validate provider when the radio changes to ensure consistency
provider_radio.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
# Information tab
with gr.Accordion("Information & Help", open=False):
gr.Markdown("""
# 🎬 Serverless-VideoGen-Hub
This application uses Hugging Face's Serverless Inference API to generate videos from text prompts.
## Supported Providers
- **hf-inference**: Hugging Face's default inference API (free)
- **fal-ai**: Fal AI provider (requires API key)
- **novita**: Novita AI provider (requires API key)
- **replicate**: Replicate provider (requires API key)
## Parameters Explained
- **Prompt**: The text description of your desired video
- **Negative Prompt**: What you DON'T want to see in the video
- **Width/Height**: Dimensions of the generated video
- **Number of Frames**: Total frames to generate
- **FPS**: Frames per second for playback
- **Inference Steps**: More steps = higher quality but slower generation
- **Guidance Scale**: How closely to follow the prompt (higher values = more faithful)
- **Motion Bucket ID**: Controls motion intensity (for Stable Video Diffusion models)
- **Seed**: For reproducible results, -1 means random
## Models
You can either select from the featured models or enter a custom model path.
Check out [Hugging Face's models page](https://huggingface.co/models?pipeline_tag=text-to-video) for more video generation models.
""")
# Launch the app
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True) |