Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -70,189 +70,76 @@ def generate_video(
|
|
70 |
# Create a unique ID for this generation
|
71 |
generation_id = uuid.uuid4().hex[:8]
|
72 |
print(f"Generation ID: {generation_id}")
|
73 |
-
|
74 |
-
# Initial parameters dictionary - we'll customize it for each provider
|
75 |
-
base_parameters = {
|
76 |
-
"negative_prompt": negative_prompt,
|
77 |
-
"num_inference_steps": num_inference_steps,
|
78 |
-
"guidance_scale": guidance_scale,
|
79 |
-
}
|
80 |
-
|
81 |
-
# Add seed if specified
|
82 |
-
if seed is not None and seed != -1:
|
83 |
-
base_parameters["seed"] = seed
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
"
|
93 |
-
"
|
94 |
-
|
95 |
-
|
96 |
-
"
|
97 |
-
"
|
|
|
|
|
|
|
|
|
98 |
}
|
99 |
-
|
100 |
-
# Add motion_bucket_id for SVD models if applicable
|
101 |
-
if "stable-video-diffusion" in model_to_use:
|
102 |
-
parameters["motion_bucket_id"] = motion_bucket_id
|
103 |
-
|
104 |
-
# Add seed if specified
|
105 |
-
if seed is not None and seed != -1:
|
106 |
-
parameters["seed"] = seed
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
parameters = {
|
112 |
-
"negative_prompt": negative_prompt,
|
113 |
-
"num_frames": num_frames,
|
114 |
-
"num_inference_steps": num_inference_steps,
|
115 |
-
"guidance_scale": guidance_scale,
|
116 |
-
}
|
117 |
-
|
118 |
-
# Add seed if specified
|
119 |
-
if seed is not None and seed != -1:
|
120 |
-
parameters["seed"] = seed
|
121 |
-
|
122 |
-
# Note: width and height are not supported by Fal-AI's text_to_video API
|
123 |
-
print("Note: width and height parameters are not supported by Fal-AI and will be ignored")
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
# Based on documentation, Novita uses specific parameters
|
128 |
-
parameters = {
|
129 |
-
"negative_prompt": negative_prompt,
|
130 |
-
"num_frames": num_frames,
|
131 |
-
"num_inference_steps": num_inference_steps,
|
132 |
-
"guidance_scale": guidance_scale,
|
133 |
-
"width": width,
|
134 |
-
"height": height
|
135 |
-
}
|
136 |
-
|
137 |
-
# Add seed if specified
|
138 |
-
if seed is not None and seed != -1:
|
139 |
-
parameters["seed"] = seed
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
parameters = {
|
144 |
-
"negative_prompt": negative_prompt,
|
145 |
-
"num_frames": num_frames,
|
146 |
-
"num_inference_steps": num_inference_steps,
|
147 |
-
"guidance_scale": guidance_scale,
|
148 |
-
"width": width,
|
149 |
-
"height": height
|
150 |
-
}
|
151 |
-
|
152 |
-
# Add seed if specified
|
153 |
-
if seed is not None and seed != -1:
|
154 |
-
parameters["seed"] = seed
|
155 |
-
|
156 |
-
# Replicate supports fps in some models
|
157 |
-
if "stable-video-diffusion" in model_to_use:
|
158 |
-
parameters["fps"] = fps
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
parameters["num_frames"] = num_frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
parameters["width"] = width
|
|
|
|
|
166 |
parameters["height"] = height
|
167 |
-
"height": height,
|
168 |
-
"num_inference_steps": num_inference_steps,
|
169 |
-
"guidance_scale": guidance_scale,
|
170 |
-
}
|
171 |
|
172 |
-
|
173 |
-
if motion_bucket_id is not None:
|
174 |
parameters["motion_bucket_id"] = motion_bucket_id
|
175 |
-
|
176 |
-
# Add seed if specified
|
177 |
-
if seed is not None:
|
178 |
-
parameters["seed"] = seed
|
179 |
|
180 |
-
#
|
181 |
-
|
182 |
-
print("Using FalAI provider, adapting parameters...")
|
183 |
-
# According to Fal-AI API specification, only these parameters are supported
|
184 |
-
parameters = {
|
185 |
-
"negative_prompt": negative_prompt,
|
186 |
-
"num_frames": num_frames,
|
187 |
-
"num_inference_steps": num_inference_steps,
|
188 |
-
"guidance_scale": guidance_scale,
|
189 |
-
}
|
190 |
-
|
191 |
-
# Add seed if specified
|
192 |
-
if seed is not None and seed != -1:
|
193 |
-
parameters["seed"] = seed
|
194 |
-
|
195 |
-
# Note: width and height are not supported by Fal-AI's text_to_video API
|
196 |
-
print("Note: width and height parameters are not supported by Fal-AI and will be ignored")
|
197 |
|
198 |
-
# For
|
199 |
-
if provider == "novita":
|
200 |
-
print("Using Novita provider, adapting parameters...")
|
201 |
-
# Based on documentation, Novita uses text_to_video method
|
202 |
-
try:
|
203 |
-
# For Novita, we create a dedicated parameters object
|
204 |
-
novita_params = {
|
205 |
-
"negative_prompt": negative_prompt,
|
206 |
-
"num_frames": num_frames,
|
207 |
-
"fps": fps,
|
208 |
-
"width": width,
|
209 |
-
"height": height,
|
210 |
-
"num_inference_steps": num_inference_steps,
|
211 |
-
"guidance_scale": guidance_scale
|
212 |
-
}
|
213 |
-
|
214 |
-
# Add seed if specified
|
215 |
-
if seed is not None:
|
216 |
-
novita_params["seed"] = seed
|
217 |
-
|
218 |
-
# For Novita, we use a different method from the InferenceClient
|
219 |
-
video_data = client.text_to_video(
|
220 |
-
prompt=prompt,
|
221 |
-
model=model_to_use,
|
222 |
-
**novita_params
|
223 |
-
)
|
224 |
-
|
225 |
-
# Save the video to a temporary file
|
226 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
227 |
-
temp_file.write(video_data)
|
228 |
-
video_path = temp_file.name
|
229 |
-
temp_file.close()
|
230 |
-
|
231 |
-
print(f"Video saved to temporary file: {video_path}")
|
232 |
-
return video_path
|
233 |
-
|
234 |
-
except Exception as e:
|
235 |
-
print(f"Error during Novita video generation: {e}")
|
236 |
-
return f"Error: {str(e)}"
|
237 |
-
|
238 |
-
# For Replicate provider - may need specific formatting
|
239 |
if provider == "replicate":
|
240 |
-
print("Using Replicate provider,
|
241 |
-
# Replicate might use different parameter formats
|
242 |
try:
|
243 |
-
# For Replicate, we use their specific method structure
|
244 |
response = client.post(
|
245 |
model=model_to_use,
|
246 |
input={
|
247 |
"prompt": prompt,
|
248 |
-
|
249 |
-
"num_frames": num_frames,
|
250 |
-
"fps": fps,
|
251 |
-
"width": width,
|
252 |
-
"height": height,
|
253 |
-
"num_inference_steps": num_inference_steps,
|
254 |
-
"guidance_scale": guidance_scale,
|
255 |
-
"seed": seed if seed is not None else 0,
|
256 |
},
|
257 |
)
|
258 |
|
@@ -268,16 +155,11 @@ def generate_video(
|
|
268 |
print(f"Error during Replicate video generation: {e}")
|
269 |
return f"Error: {str(e)}"
|
270 |
|
271 |
-
#
|
272 |
try:
|
273 |
print(f"Sending request to {provider} provider with model {model_to_use}.")
|
274 |
-
print(f"Parameters: {parameters}")
|
275 |
|
276 |
-
#
|
277 |
-
if "prompt" in parameters:
|
278 |
-
del parameters["prompt"]
|
279 |
-
|
280 |
-
# Use the text_to_video method of the InferenceClient
|
281 |
video_data = client.text_to_video(
|
282 |
prompt=prompt,
|
283 |
model=model_to_use,
|
@@ -369,40 +251,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
369 |
lines=2
|
370 |
)
|
371 |
|
372 |
-
with gr.Row():
|
373 |
-
num_inference_steps = gr.Slider(
|
374 |
-
minimum=1,
|
375 |
-
maximum=100,
|
376 |
-
value=25,
|
377 |
-
step=1,
|
378 |
-
label="Inference Steps"
|
379 |
-
)
|
380 |
-
|
381 |
-
guidance_scale = gr.Slider(
|
382 |
-
minimum=1.0,
|
383 |
-
maximum=20.0,
|
384 |
-
value=7.5,
|
385 |
-
step=0.5,
|
386 |
-
label="Guidance Scale"
|
387 |
-
)
|
388 |
-
|
389 |
-
with gr.Row():
|
390 |
-
motion_bucket_id = gr.Slider(
|
391 |
-
minimum=1,
|
392 |
-
maximum=255,
|
393 |
-
value=127,
|
394 |
-
step=1,
|
395 |
-
label="Motion Bucket ID (for SVD models)"
|
396 |
-
)
|
397 |
-
|
398 |
-
seed = gr.Slider(
|
399 |
-
minimum=-1,
|
400 |
-
maximum=2147483647,
|
401 |
-
value=-1,
|
402 |
-
step=1,
|
403 |
-
label="Seed (-1 for random)"
|
404 |
-
)
|
405 |
-
|
406 |
with gr.Row():
|
407 |
width = gr.Slider(
|
408 |
minimum=256,
|
|
|
70 |
# Create a unique ID for this generation
|
71 |
generation_id = uuid.uuid4().hex[:8]
|
72 |
print(f"Generation ID: {generation_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Define supported parameters for each provider
|
75 |
+
provider_param_support = {
|
76 |
+
"hf-inference": {
|
77 |
+
"supported": ["prompt", "model", "negative_prompt", "num_frames", "num_inference_steps", "guidance_scale", "seed"],
|
78 |
+
"extra_info": "HF Inference doesn't support 'fps', 'width', 'height', or 'motion_bucket_id' parameters"
|
79 |
+
},
|
80 |
+
"fal-ai": {
|
81 |
+
"supported": ["prompt", "model", "negative_prompt", "num_frames", "num_inference_steps", "guidance_scale", "seed"],
|
82 |
+
"extra_info": "Fal-AI doesn't support 'fps', 'width', 'height', or 'motion_bucket_id' parameters"
|
83 |
+
},
|
84 |
+
"novita": {
|
85 |
+
"supported": ["prompt", "model", "negative_prompt", "num_frames", "num_inference_steps", "guidance_scale", "seed", "fps", "width", "height"],
|
86 |
+
"extra_info": "Novita may not support 'motion_bucket_id' parameter"
|
87 |
+
},
|
88 |
+
"replicate": {
|
89 |
+
"supported": ["prompt", "model", "negative_prompt", "num_frames", "num_inference_steps", "guidance_scale", "seed", "fps", "width", "height"],
|
90 |
+
"extra_info": "Replicate parameters vary by specific model"
|
91 |
}
|
92 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Get supported parameters for the current provider
|
95 |
+
supported_params = provider_param_support.get(provider, {}).get("supported", [])
|
96 |
+
provider_info = provider_param_support.get(provider, {}).get("extra_info", "No specific information available")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
print(f"Provider info: {provider_info}")
|
99 |
+
print(f"Supported parameters: {supported_params}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# Create a parameters dictionary with only supported parameters
|
102 |
+
parameters = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
if "negative_prompt" in supported_params:
|
105 |
+
parameters["negative_prompt"] = negative_prompt
|
106 |
+
|
107 |
+
if "num_frames" in supported_params:
|
108 |
parameters["num_frames"] = num_frames
|
109 |
+
|
110 |
+
if "num_inference_steps" in supported_params:
|
111 |
+
parameters["num_inference_steps"] = num_inference_steps
|
112 |
+
|
113 |
+
if "guidance_scale" in supported_params:
|
114 |
+
parameters["guidance_scale"] = guidance_scale
|
115 |
+
|
116 |
+
if "seed" in supported_params and seed is not None:
|
117 |
+
parameters["seed"] = seed
|
118 |
+
|
119 |
+
if "fps" in supported_params:
|
120 |
+
parameters["fps"] = fps
|
121 |
+
|
122 |
+
if "width" in supported_params:
|
123 |
parameters["width"] = width
|
124 |
+
|
125 |
+
if "height" in supported_params:
|
126 |
parameters["height"] = height
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
if "motion_bucket_id" in supported_params:
|
|
|
129 |
parameters["motion_bucket_id"] = motion_bucket_id
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
# Now that we have a clean parameter set, handle provider-specific logic
|
132 |
+
print(f"Final parameters for {provider}: {parameters}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# For Replicate provider - uses post method
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
if provider == "replicate":
|
136 |
+
print("Using Replicate provider, using post method...")
|
|
|
137 |
try:
|
|
|
138 |
response = client.post(
|
139 |
model=model_to_use,
|
140 |
input={
|
141 |
"prompt": prompt,
|
142 |
+
**parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
},
|
144 |
)
|
145 |
|
|
|
155 |
print(f"Error during Replicate video generation: {e}")
|
156 |
return f"Error: {str(e)}"
|
157 |
|
158 |
+
# For all other providers, use the standard text_to_video method
|
159 |
try:
|
160 |
print(f"Sending request to {provider} provider with model {model_to_use}.")
|
|
|
161 |
|
162 |
+
# Use the text_to_video method of the InferenceClient with only supported parameters
|
|
|
|
|
|
|
|
|
163 |
video_data = client.text_to_video(
|
164 |
prompt=prompt,
|
165 |
model=model_to_use,
|
|
|
251 |
lines=2
|
252 |
)
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
with gr.Row():
|
255 |
width = gr.Slider(
|
256 |
minimum=256,
|