skytnt commited on
Commit
13db828
1 Parent(s): 1079729
Files changed (3) hide show
  1. README.md +1 -1
  2. app_onnx.py +577 -0
  3. requirements.txt +1 -0
README.md CHANGED
@@ -5,7 +5,7 @@ colorFrom: red
5
  colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 4.43.0
8
- app_file: app.py
9
  pinned: true
10
  license: apache-2.0
11
  ---
 
5
  colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 4.43.0
8
+ app_file: app_onnx.py
9
  pinned: true
10
  license: apache-2.0
11
  ---
app_onnx.py ADDED
@@ -0,0 +1,577 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import random
3
+ import argparse
4
+ import glob
5
+ import json
6
+ import os
7
+ import time
8
+ from concurrent.futures import ThreadPoolExecutor
9
+
10
+ import gradio as gr
11
+ import numpy as np
12
+ import onnxruntime as rt
13
+ import tqdm
14
+ from huggingface_hub import hf_hub_download
15
+
16
+ import MIDI
17
+ from midi_synthesizer import MidiSynthesizer
18
+ from midi_tokenizer import MIDITokenizer
19
+
20
+ MAX_SEED = np.iinfo(np.int32).max
21
+ in_space = os.getenv("SYSTEM") == "spaces"
22
+
23
+
24
+ def softmax(x, axis):
25
+ x_max = np.amax(x, axis=axis, keepdims=True)
26
+ exp_x_shifted = np.exp(x - x_max)
27
+ return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
28
+
29
+
30
+ def sample_top_p_k(probs, p, k, generator=None):
31
+ if generator is None:
32
+ generator = np.random
33
+ probs_idx = np.argsort(-probs, axis=-1)
34
+ probs_sort = np.take_along_axis(probs, probs_idx, -1)
35
+ probs_sum = np.cumsum(probs_sort, axis=-1)
36
+ mask = probs_sum - probs_sort > p
37
+ probs_sort[mask] = 0.0
38
+ mask = np.zeros(probs_sort.shape[-1])
39
+ mask[:k] = 1
40
+ probs_sort = probs_sort * mask
41
+ probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
42
+ shape = probs_sort.shape
43
+ probs_sort_flat = probs_sort.reshape(-1, shape[-1])
44
+ probs_idx_flat = probs_idx.reshape(-1, shape[-1])
45
+ next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
46
+ next_token = next_token.reshape(*shape[:-1])
47
+ return next_token
48
+
49
+
50
+ def generate(model, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
51
+ disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
52
+ tokenizer = model[2]
53
+ if disable_channels is not None:
54
+ disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
55
+ else:
56
+ disable_channels = []
57
+ if generator is None:
58
+ generator = np.random
59
+ max_token_seq = tokenizer.max_token_seq
60
+ if prompt is None:
61
+ input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
62
+ input_tensor[0, 0] = tokenizer.bos_id # bos
63
+ input_tensor = input_tensor[None, :, :]
64
+ input_tensor = np.repeat(input_tensor, repeats=batch_size, axis=0)
65
+ else:
66
+ if len(prompt.shape) == 2:
67
+ prompt = prompt[None, :]
68
+ prompt = np.repeat(prompt, repeats=batch_size, axis=0)
69
+ elif prompt.shape[0] == 1:
70
+ prompt = np.repeat(prompt, repeats=batch_size, axis=0)
71
+ elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
72
+ raise ValueError(f"invalid shape for prompt, {prompt.shape}")
73
+ prompt = prompt[..., :max_token_seq]
74
+ if prompt.shape[-1] < max_token_seq:
75
+ prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
76
+ mode="constant", constant_values=tokenizer.pad_id)
77
+ input_tensor = prompt
78
+ cur_len = input_tensor.shape[1]
79
+ bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
80
+ with bar:
81
+ while cur_len < max_len:
82
+ end = [False] * batch_size
83
+ hidden = model[0].run(None, {'x': input_tensor})[0][:, -1]
84
+ next_token_seq = np.empty((batch_size, 0), dtype=np.int64)
85
+ event_names = [""] * batch_size
86
+ for i in range(max_token_seq):
87
+ mask = np.zeros((batch_size, tokenizer.vocab_size), dtype=np.int64)
88
+ for b in range(batch_size):
89
+ if end[b]:
90
+ mask[b, tokenizer.pad_id] = 1
91
+ continue
92
+ if i == 0:
93
+ mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
94
+ if disable_patch_change:
95
+ mask_ids.remove(tokenizer.event_ids["patch_change"])
96
+ if disable_control_change:
97
+ mask_ids.remove(tokenizer.event_ids["control_change"])
98
+ mask[b, mask_ids] = 1
99
+ else:
100
+ param_names = tokenizer.events[event_names[b]]
101
+ if i > len(param_names):
102
+ mask[b, tokenizer.pad_id] = 1
103
+ continue
104
+ param_name = param_names[i - 1]
105
+ mask_ids = tokenizer.parameter_ids[param_name]
106
+ if param_name == "channel":
107
+ mask_ids = [i for i in mask_ids if i not in disable_channels]
108
+ mask[b, mask_ids] = 1
109
+ mask = mask[:, None, :]
110
+ logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:]
111
+ scores = softmax(logits / temp, -1) * mask
112
+ samples = sample_top_p_k(scores, top_p, top_k, generator)
113
+ if i == 0:
114
+ next_token_seq = samples
115
+ for b in range(batch_size):
116
+ if end[b]:
117
+ continue
118
+ eid = samples[b].item()
119
+ if eid == tokenizer.eos_id:
120
+ end[b] = True
121
+ else:
122
+ event_names[b] = tokenizer.id_events[eid]
123
+ else:
124
+ next_token_seq = np.concatenate([next_token_seq, samples], axis=1)
125
+ if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
126
+ break
127
+ if next_token_seq.shape[1] < max_token_seq:
128
+ next_token_seq = np.pad(next_token_seq,
129
+ ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
130
+ mode="constant", constant_values=tokenizer.pad_id)
131
+ next_token_seq = next_token_seq[:, None, :]
132
+ input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
133
+ cur_len += 1
134
+ bar.update(1)
135
+ yield next_token_seq[:, 0]
136
+ if all(end):
137
+ break
138
+
139
+
140
+ def create_msg(name, data):
141
+ return {"name": name, "data": data}
142
+
143
+
144
+ def send_msgs(msgs):
145
+ return json.dumps(msgs)
146
+
147
+
148
+ def calc_time(x):
149
+ return 5.849e-5*x**2 + 0.04781*x + 0.1168
150
+
151
+ def get_duration(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm,
152
+ time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr,
153
+ remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
154
+ if tab == 0:
155
+ start_events = 1
156
+ elif tab == 1 and mid is not None:
157
+ start_events = midi_events
158
+ elif tab == 2 and mid_seq is not None:
159
+ start_events = len(mid_seq[0])
160
+ else:
161
+ start_events = 1
162
+ t = calc_time(start_events + gen_events) - calc_time(start_events) + 5
163
+ if "large" in model_name:
164
+ t *= 2
165
+ return t
166
+
167
+
168
+ @spaces.GPU(duration=get_duration)
169
+ def run(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig,
170
+ key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels,
171
+ seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
172
+ model = models[model_name]
173
+ model[0].set_providers(['CUDAExecutionProvider', 'CPUExecutionProvider'])
174
+ model[1].set_providers(['CUDAExecutionProvider', 'CPUExecutionProvider'])
175
+ tokenizer = model[2]
176
+ bpm = int(bpm)
177
+ if time_sig == "auto":
178
+ time_sig = None
179
+ time_sig_nn = 4
180
+ time_sig_dd = 2
181
+ else:
182
+ time_sig_nn, time_sig_dd = time_sig.split('/')
183
+ time_sig_nn = int(time_sig_nn)
184
+ time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)]
185
+ if key_sig == 0:
186
+ key_sig = None
187
+ key_sig_sf = 0
188
+ key_sig_mi = 0
189
+ else:
190
+ key_sig = (key_sig - 1)
191
+ key_sig_sf = key_sig // 2 - 7
192
+ key_sig_mi = key_sig % 2
193
+ gen_events = int(gen_events)
194
+ max_len = gen_events
195
+ if seed_rand:
196
+ seed = random.randint(0, MAX_SEED)
197
+ generator = np.random.RandomState(seed)
198
+ disable_patch_change = False
199
+ disable_channels = None
200
+ if tab == 0:
201
+ i = 0
202
+ mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
203
+ if tokenizer.version == "v2":
204
+ if time_sig is not None:
205
+ mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1]))
206
+ if key_sig is not None:
207
+ mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi]))
208
+ if bpm != 0:
209
+ mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm]))
210
+ patches = {}
211
+ if instruments is None:
212
+ instruments = []
213
+ for instr in instruments:
214
+ patches[i] = patch2number[instr]
215
+ i = (i + 1) if i != 8 else 10
216
+ if drum_kit != "None":
217
+ patches[9] = drum_kits2number[drum_kit]
218
+ for i, (c, p) in enumerate(patches.items()):
219
+ mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p]))
220
+ mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
221
+ mid_seq = mid.tolist()
222
+ if len(instruments) > 0:
223
+ disable_patch_change = True
224
+ disable_channels = [i for i in range(16) if i not in patches]
225
+ elif tab == 1 and mid is not None:
226
+ eps = 4 if reduce_cc_st else 0
227
+ mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps,
228
+ remap_track_channel=remap_track_channel,
229
+ add_default_instr=add_default_instr,
230
+ remove_empty_channels=remove_empty_channels)
231
+ mid = mid[:int(midi_events)]
232
+ mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
233
+ mid_seq = mid.tolist()
234
+ elif tab == 2 and mid_seq is not None:
235
+ mid = np.asarray(mid_seq, dtype=np.int64)
236
+ if continuation_select > 0:
237
+ continuation_state.append(mid_seq)
238
+ mid = np.repeat(mid[continuation_select - 1:continuation_select], repeats=OUTPUT_BATCH_SIZE, axis=0)
239
+ mid_seq = mid.tolist()
240
+ else:
241
+ continuation_state.append(mid.shape[1])
242
+ else:
243
+ continuation_state = [0]
244
+ mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
245
+ mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
246
+ mid_seq = mid.tolist()
247
+
248
+ if mid is not None:
249
+ max_len += mid.shape[1]
250
+
251
+ init_msgs = [create_msg("progress", [0, gen_events])]
252
+ if not (tab == 2 and continuation_select == 0):
253
+ for i in range(OUTPUT_BATCH_SIZE):
254
+ events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
255
+ init_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
256
+ create_msg("visualizer_append", [i, events])]
257
+ yield mid_seq, continuation_state, seed, send_msgs(init_msgs)
258
+ midi_generator = generate(model, mid, batch_size=OUTPUT_BATCH_SIZE, max_len=max_len, temp=temp,
259
+ top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change,
260
+ disable_control_change=not allow_cc, disable_channels=disable_channels,
261
+ generator=generator)
262
+ events = [list() for i in range(OUTPUT_BATCH_SIZE)]
263
+ t = time.time()
264
+ for i, token_seqs in enumerate(midi_generator):
265
+ token_seqs = token_seqs.tolist()
266
+ for j in range(OUTPUT_BATCH_SIZE):
267
+ token_seq = token_seqs[j]
268
+ mid_seq[j].append(token_seq)
269
+ events[j].append(tokenizer.tokens2event(token_seq))
270
+ if time.time() - t > 0.2:
271
+ msgs = [create_msg("progress", [i + 1, gen_events])]
272
+ for j in range(OUTPUT_BATCH_SIZE):
273
+ msgs += [create_msg("visualizer_append", [j, events[j]])]
274
+ events[j] = list()
275
+ yield mid_seq, continuation_state, seed, send_msgs(msgs)
276
+ t = time.time()
277
+ yield mid_seq, continuation_state, seed, send_msgs([])
278
+
279
+
280
+ def finish_run(model_name, mid_seq):
281
+ if mid_seq is None:
282
+ outputs = [None] * OUTPUT_BATCH_SIZE
283
+ return *outputs, []
284
+ tokenizer = models[model_name][2]
285
+ outputs = []
286
+ end_msgs = [create_msg("progress", [0, 0])]
287
+ if not os.path.exists("outputs"):
288
+ os.mkdir("outputs")
289
+ for i in range(OUTPUT_BATCH_SIZE):
290
+ events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
291
+ mid = tokenizer.detokenize(mid_seq[i])
292
+ with open(f"outputs/output{i + 1}.mid", 'wb') as f:
293
+ f.write(MIDI.score2midi(mid))
294
+ outputs.append(f"outputs/output{i + 1}.mid")
295
+ end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
296
+ create_msg("visualizer_append", [i, events]),
297
+ create_msg("visualizer_end", i)]
298
+ return *outputs, send_msgs(end_msgs)
299
+
300
+
301
+ def synthesis_task(mid):
302
+ return synthesizer.synthesis(MIDI.score2opus(mid))
303
+
304
+ def render_audio(model_name, mid_seq, should_render_audio):
305
+ if (not should_render_audio) or mid_seq is None:
306
+ outputs = [None] * OUTPUT_BATCH_SIZE
307
+ return tuple(outputs)
308
+ tokenizer = models[model_name][2]
309
+ outputs = []
310
+ if not os.path.exists("outputs"):
311
+ os.mkdir("outputs")
312
+ audio_futures = []
313
+ for i in range(OUTPUT_BATCH_SIZE):
314
+ mid = tokenizer.detokenize(mid_seq[i])
315
+ audio_future = thread_pool.submit(synthesis_task, mid)
316
+ audio_futures.append(audio_future)
317
+ for future in audio_futures:
318
+ outputs.append((44100, future.result()))
319
+ if OUTPUT_BATCH_SIZE == 1:
320
+ return outputs[0]
321
+ return tuple(outputs)
322
+
323
+
324
+ def undo_continuation(model_name, mid_seq, continuation_state):
325
+ if mid_seq is None or len(continuation_state) < 2:
326
+ return mid_seq, continuation_state, send_msgs([])
327
+ tokenizer = models[model_name][2]
328
+ if isinstance(continuation_state[-1], list):
329
+ mid_seq = continuation_state[-1]
330
+ else:
331
+ mid_seq = [ms[:continuation_state[-1]] for ms in mid_seq]
332
+ continuation_state = continuation_state[:-1]
333
+ end_msgs = [create_msg("progress", [0, 0])]
334
+ for i in range(OUTPUT_BATCH_SIZE):
335
+ events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
336
+ end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
337
+ create_msg("visualizer_append", [i, events]),
338
+ create_msg("visualizer_end", i)]
339
+ return mid_seq, continuation_state, send_msgs(end_msgs)
340
+
341
+
342
+ def load_javascript(dir="javascript"):
343
+ scripts_list = glob.glob(f"{dir}/*.js")
344
+ javascript = ""
345
+ for path in scripts_list:
346
+ with open(path, "r", encoding="utf8") as jsfile:
347
+ js_content = jsfile.read()
348
+ js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
349
+ f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
350
+ javascript += f"\n<!-- {path} --><script>{js_content}</script>"
351
+ template_response_ori = gr.routes.templates.TemplateResponse
352
+
353
+ def template_response(*args, **kwargs):
354
+ res = template_response_ori(*args, **kwargs)
355
+ res.body = res.body.replace(
356
+ b'</head>', f'{javascript}</head>'.encode("utf8"))
357
+ res.init_headers()
358
+ return res
359
+
360
+ gr.routes.templates.TemplateResponse = template_response
361
+
362
+
363
+ def hf_hub_download_retry(repo_id, filename):
364
+ print(f"downloading {repo_id} {filename}")
365
+ retry = 0
366
+ err = None
367
+ while retry < 30:
368
+ try:
369
+ return hf_hub_download(repo_id=repo_id, filename=filename)
370
+ except Exception as e:
371
+ err = e
372
+ retry += 1
373
+ if err:
374
+ raise err
375
+
376
+
377
+ def get_tokenizer(config_name):
378
+ tv, size = config_name.split("-")
379
+ tv = tv[1:]
380
+ if tv[-1] == "o":
381
+ o = True
382
+ tv = tv[:-1]
383
+ else:
384
+ o = False
385
+ if tv not in ["v1", "v2"]:
386
+ raise ValueError(f"Unknown tokenizer version {tv}")
387
+ tokenizer = MIDITokenizer(tv)
388
+ tokenizer.set_optimise_midi(o)
389
+ return tokenizer
390
+
391
+
392
+ number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
393
+ 40: "Blush", 48: "Orchestra"}
394
+ patch2number = {v: k for k, v in MIDI.Number2patch.items()}
395
+ drum_kits2number = {v: k for k, v in number2drum_kits.items()}
396
+ key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm',
397
+ 'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m']
398
+
399
+ if __name__ == "__main__":
400
+ parser = argparse.ArgumentParser()
401
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
402
+ parser.add_argument("--port", type=int, default=7860, help="gradio server port")
403
+ parser.add_argument("--device", type=str, default="cuda", help="device to run model")
404
+ parser.add_argument("--batch", type=int, default=8, help="batch size")
405
+ parser.add_argument("--max-gen", type=int, default=1024, help="max")
406
+ opt = parser.parse_args()
407
+ OUTPUT_BATCH_SIZE = opt.batch
408
+ soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
409
+ thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
410
+ synthesizer = MidiSynthesizer(soundfont_path)
411
+ models_info = {
412
+ "generic pretrain model (tv2o-medium) by skytnt": [
413
+ "skytnt/midi-model-tv2o-medium", "", "tv2o-medium", {
414
+ "jpop": "skytnt/midi-model-tv2om-jpop-lora",
415
+ "touhou": "skytnt/midi-model-tv2om-touhou-lora"
416
+ }
417
+ ],
418
+ "generic pretrain model (tv2o-large) by asigalov61": [
419
+ "asigalov61/Music-Llama", "", "tv2o-large", {}
420
+ ],
421
+ "generic pretrain model (tv2o-medium) by asigalov61": [
422
+ "asigalov61/Music-Llama-Medium", "", "tv2o-medium", {}
423
+ ],
424
+ "generic pretrain model (tv1-medium) by skytnt": [
425
+ "skytnt/midi-model", "", "tv1-medium", {}
426
+ ]
427
+ }
428
+ models = {}
429
+ providers = ['CPUExecutionProvider']
430
+
431
+ for name, (repo_id, path, config, loras) in models_info.items():
432
+ model_base_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx")
433
+ model_token_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx")
434
+ model_base = rt.InferenceSession(model_base_path, providers=providers)
435
+ model_token = rt.InferenceSession(model_token_path, providers=providers)
436
+ tokenizer = get_tokenizer(config)
437
+ models[name] = [model_base, model_token, tokenizer]
438
+ for lora_name, lora_repo in loras.items():
439
+ model_base_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_base.onnx")
440
+ model_token_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_token.onnx")
441
+ model_base = rt.InferenceSession(model_base_path, providers=providers)
442
+ model_token = rt.InferenceSession(model_token_path, providers=providers)
443
+ tokenizer = get_tokenizer(config)
444
+ models[f"{name} with {lora_name} lora"] = [model_base, model_token, tokenizer]
445
+
446
+ load_javascript()
447
+ app = gr.Blocks()
448
+ with app:
449
+ gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
450
+ gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
451
+ "Midi event transformer for symbolic music generation\n\n"
452
+ "Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
453
+ "[Open In Colab]"
454
+ "(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
455
+ " or [download windows app](https://github.com/SkyTNT/midi-model/releases)"
456
+ " for unlimited generation\n\n"
457
+ "**Update v1.3**: MIDITokenizerV2 and new MidiVisualizer"
458
+ )
459
+ js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
460
+ js_msg.change(None, [js_msg], [], js="""
461
+ (msg_json) =>{
462
+ let msgs = JSON.parse(msg_json);
463
+ executeCallbacks(msgReceiveCallbacks, msgs);
464
+ return [];
465
+ }
466
+ """)
467
+ input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
468
+ type="value", value=list(models.keys())[0])
469
+ tab_select = gr.State(value=0)
470
+ with gr.Tabs():
471
+ with gr.TabItem("custom prompt") as tab1:
472
+ input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()),
473
+ multiselect=True, max_choices=15, type="value")
474
+ input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value",
475
+ value="None")
476
+ input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255,
477
+ step=1,
478
+ value=0)
479
+ input_time_sig = gr.Radio(label="time signature (only for tv2 models)",
480
+ value="auto",
481
+ choices=["auto", "4/4", "2/4", "3/4", "6/4", "7/4",
482
+ "2/2", "3/2", "4/2", "3/8", "5/8", "6/8", "7/8", "9/8", "12/8"]
483
+ )
484
+ input_key_sig = gr.Radio(label="key signature (only for tv2 models)",
485
+ value="auto",
486
+ choices=["auto"] + key_signatures,
487
+ type="index"
488
+ )
489
+ example1 = gr.Examples([
490
+ [[], "None"],
491
+ [["Acoustic Grand"], "None"],
492
+ [['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings',
493
+ 'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"],
494
+ [['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet',
495
+ 'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"],
496
+ [['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon',
497
+ 'Oboe', 'Pizzicato Strings'], "Orchestra"],
498
+ [['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)',
499
+ 'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"],
500
+ [["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar",
501
+ "Electric Bass(finger)"], "Standard"]
502
+ ], [input_instruments, input_drum_kit])
503
+ with gr.TabItem("midi prompt") as tab2:
504
+ input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
505
+ input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
506
+ step=1,
507
+ value=128)
508
+ input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True)
509
+ input_remap_track_channel = gr.Checkbox(
510
+ label="remap tracks and channels so each track has only one channel and in order", value=True)
511
+ input_add_default_instr = gr.Checkbox(
512
+ label="add a default instrument to channels that don't have an instrument", value=True)
513
+ input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False)
514
+ example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
515
+ [input_midi, input_midi_events])
516
+ with gr.TabItem("last output prompt") as tab3:
517
+ gr.Markdown("Continue generating on the last output.")
518
+ input_continuation_select = gr.Radio(label="select output to continue generating", value="all",
519
+ choices=["all"] + [f"output{i + 1}" for i in
520
+ range(OUTPUT_BATCH_SIZE)],
521
+ type="index"
522
+ )
523
+ undo_btn = gr.Button("undo the last continuation")
524
+
525
+ tab1.select(lambda: 0, None, tab_select, queue=False)
526
+ tab2.select(lambda: 1, None, tab_select, queue=False)
527
+ tab3.select(lambda: 2, None, tab_select, queue=False)
528
+ input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1,
529
+ step=1, value=0)
530
+ input_seed_rand = gr.Checkbox(label="random seed", value=True)
531
+ input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen,
532
+ step=1, value=opt.max_gen // 2)
533
+ with gr.Accordion("options", open=False):
534
+ input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
535
+ input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.95)
536
+ input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=20)
537
+ input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
538
+ input_render_audio = gr.Checkbox(label="render audio after generation", value=True)
539
+ example3 = gr.Examples([[1, 0.94, 128], [1, 0.98, 20], [1, 0.98, 12]],
540
+ [input_temp, input_top_p, input_top_k])
541
+ run_btn = gr.Button("generate", variant="primary")
542
+ # stop_btn = gr.Button("stop and output")
543
+ output_midi_seq = gr.State()
544
+ output_continuation_state = gr.State([0])
545
+ midi_outputs = []
546
+ audio_outputs = []
547
+ with gr.Tabs(elem_id="output_tabs"):
548
+ for i in range(OUTPUT_BATCH_SIZE):
549
+ with gr.TabItem(f"output {i + 1}") as tab1:
550
+ output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
551
+ output_audio = gr.Audio(label="output audio", format="mp3", elem_id=f"midi_audio_{i}")
552
+ output_midi = gr.File(label="output midi", file_types=[".mid"])
553
+ midi_outputs.append(output_midi)
554
+ audio_outputs.append(output_audio)
555
+ run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, output_continuation_state,
556
+ input_continuation_select, input_instruments, input_drum_kit, input_bpm,
557
+ input_time_sig, input_key_sig, input_midi, input_midi_events,
558
+ input_reduce_cc_st, input_remap_track_channel,
559
+ input_add_default_instr, input_remove_empty_channels,
560
+ input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p,
561
+ input_top_k, input_allow_cc],
562
+ [output_midi_seq, output_continuation_state, input_seed, js_msg],
563
+ concurrency_limit=10, queue=True)
564
+ finish_run_event = run_event.then(fn=finish_run,
565
+ inputs=[input_model, output_midi_seq],
566
+ outputs=midi_outputs + [js_msg],
567
+ queue=False)
568
+ finish_run_event.then(fn=render_audio,
569
+ inputs=[input_model, output_midi_seq, input_render_audio],
570
+ outputs=audio_outputs,
571
+ queue=False)
572
+ # stop_btn.click(None, [], [], cancels=run_event,
573
+ # queue=False)
574
+ undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state],
575
+ [output_midi_seq, output_continuation_state, js_msg], queue=False)
576
+ app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True)
577
+ thread_pool.shutdown()
requirements.txt CHANGED
@@ -2,6 +2,7 @@
2
  Pillow
3
  numpy
4
  torch
 
5
  peft>=0.13.0
6
  transformers>=4.36
7
  gradio==4.43.0
 
2
  Pillow
3
  numpy
4
  torch
5
+ onnxruntime-gpu
6
  peft>=0.13.0
7
  transformers>=4.36
8
  gradio==4.43.0