Spaces:
Paused
Paused
to torch
Browse files- README.md +2 -2
- app.py +41 -60
- midi_model.py +129 -0
- requirements.txt +4 -1
README.md
CHANGED
@@ -3,8 +3,8 @@ title: Midi Music Generator
|
|
3 |
emoji: 🎼🎶
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
-
sdk:
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
|
|
3 |
emoji: 🎼🎶
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.43.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -1,79 +1,54 @@
|
|
1 |
import argparse
|
2 |
import glob
|
3 |
-
import
|
|
|
4 |
import time
|
5 |
-
import uuid
|
6 |
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
-
import
|
|
|
|
|
10 |
import tqdm
|
11 |
-
import json
|
12 |
-
from huggingface_hub import hf_hub_download
|
13 |
|
14 |
import MIDI
|
15 |
-
from
|
16 |
from midi_tokenizer import MIDITokenizer
|
|
|
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
in_space = os.getenv("SYSTEM") == "spaces"
|
20 |
|
21 |
|
22 |
-
|
23 |
-
x_max = np.amax(x, axis=axis, keepdims=True)
|
24 |
-
exp_x_shifted = np.exp(x - x_max)
|
25 |
-
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
|
26 |
-
|
27 |
-
|
28 |
-
def sample_top_p_k(probs, p, k, generator=None):
|
29 |
-
if generator is None:
|
30 |
-
generator = np.random
|
31 |
-
probs_idx = np.argsort(-probs, axis=-1)
|
32 |
-
probs_sort = np.take_along_axis(probs, probs_idx, -1)
|
33 |
-
probs_sum = np.cumsum(probs_sort, axis=-1)
|
34 |
-
mask = probs_sum - probs_sort > p
|
35 |
-
probs_sort[mask] = 0.0
|
36 |
-
mask = np.zeros(probs_sort.shape[-1])
|
37 |
-
mask[:k] = 1
|
38 |
-
probs_sort = probs_sort * mask
|
39 |
-
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
|
40 |
-
shape = probs_sort.shape
|
41 |
-
probs_sort_flat = probs_sort.reshape(-1, shape[-1])
|
42 |
-
probs_idx_flat = probs_idx.reshape(-1, shape[-1])
|
43 |
-
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
|
44 |
-
next_token = next_token.reshape(*shape[:-1])
|
45 |
-
return next_token
|
46 |
-
|
47 |
-
|
48 |
def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
49 |
-
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
|
50 |
if disable_channels is not None:
|
51 |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
|
52 |
else:
|
53 |
disable_channels = []
|
54 |
-
if generator is None:
|
55 |
-
generator = np.random
|
56 |
max_token_seq = tokenizer.max_token_seq
|
57 |
if prompt is None:
|
58 |
-
input_tensor =
|
59 |
input_tensor[0, 0] = tokenizer.bos_id # bos
|
60 |
else:
|
61 |
prompt = prompt[:, :max_token_seq]
|
62 |
if prompt.shape[-1] < max_token_seq:
|
63 |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
|
64 |
mode="constant", constant_values=tokenizer.pad_id)
|
65 |
-
input_tensor = prompt
|
66 |
-
input_tensor = input_tensor
|
67 |
cur_len = input_tensor.shape[1]
|
68 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
|
69 |
-
with bar:
|
70 |
while cur_len < max_len:
|
71 |
end = False
|
72 |
-
hidden = model
|
73 |
-
next_token_seq =
|
74 |
event_name = ""
|
75 |
for i in range(max_token_seq):
|
76 |
-
mask =
|
77 |
if i == 0:
|
78 |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
|
79 |
if disable_patch_change:
|
@@ -87,9 +62,9 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
87 |
if param_name == "channel":
|
88 |
mask_ids = [i for i in mask_ids if i not in disable_channels]
|
89 |
mask[mask_ids] = 1
|
90 |
-
logits = model
|
91 |
-
scores = softmax(logits / temp,
|
92 |
-
sample = sample_top_p_k(scores, top_p, top_k, generator)
|
93 |
if i == 0:
|
94 |
next_token_seq = sample
|
95 |
eid = sample.item()
|
@@ -98,17 +73,17 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
98 |
break
|
99 |
event_name = tokenizer.id_events[eid]
|
100 |
else:
|
101 |
-
next_token_seq =
|
102 |
if len(tokenizer.events[event_name]) == i:
|
103 |
break
|
104 |
if next_token_seq.shape[1] < max_token_seq:
|
105 |
-
next_token_seq =
|
106 |
-
|
107 |
-
next_token_seq = next_token_seq
|
108 |
-
input_tensor =
|
109 |
cur_len += 1
|
110 |
bar.update(1)
|
111 |
-
yield next_token_seq.reshape(-1)
|
112 |
if end:
|
113 |
break
|
114 |
|
@@ -129,7 +104,7 @@ def run(model_name, tab, instruments, drum_kit, bpm, mid, midi_events, midi_opt,
|
|
129 |
max_len = gen_events
|
130 |
if seed_rand:
|
131 |
seed = np.random.randint(0, MAX_SEED)
|
132 |
-
generator =
|
133 |
disable_patch_change = False
|
134 |
disable_channels = None
|
135 |
if tab == 0:
|
@@ -160,14 +135,16 @@ def run(model_name, tab, instruments, drum_kit, bpm, mid, midi_events, midi_opt,
|
|
160 |
for token_seq in mid:
|
161 |
mid_seq.append(token_seq.tolist())
|
162 |
max_len += len(mid)
|
|
|
163 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
164 |
init_msgs = [create_msg("visualizer_clear", None), create_msg("visualizer_append", events)]
|
165 |
t = time.time() + 1
|
166 |
yield mid_seq, None, None, seed, send_msgs(init_msgs)
|
167 |
model = models[model_name]
|
|
|
168 |
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
|
169 |
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
|
170 |
-
disable_channels=disable_channels, generator=generator)
|
171 |
events = []
|
172 |
for i, token_seq in enumerate(midi_generator):
|
173 |
token_seq = token_seq.tolist()
|
@@ -245,15 +222,18 @@ if __name__ == "__main__":
|
|
245 |
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
|
246 |
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"],
|
247 |
}
|
|
|
248 |
models = {}
|
249 |
tokenizer = MIDITokenizer()
|
250 |
-
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
251 |
for name, (repo_id, path) in models_info.items():
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
257 |
|
258 |
load_javascript()
|
259 |
app = gr.Blocks()
|
@@ -265,7 +245,8 @@ if __name__ == "__main__":
|
|
265 |
"[Open In Colab]"
|
266 |
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
|
267 |
" for faster running and longer generation\n\n"
|
268 |
-
"**Update v1.2**: Optimise the tokenizer and dataset"
|
|
|
269 |
)
|
270 |
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
|
271 |
js_msg.change(None, [js_msg], [], js="""
|
|
|
1 |
import argparse
|
2 |
import glob
|
3 |
+
import json
|
4 |
+
import os
|
5 |
import time
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import torch.nn.functional as F
|
12 |
import tqdm
|
|
|
|
|
13 |
|
14 |
import MIDI
|
15 |
+
from midi_model import MIDIModel
|
16 |
from midi_tokenizer import MIDITokenizer
|
17 |
+
from midi_synthesizer import synthesis
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
in_space = os.getenv("SYSTEM") == "spaces"
|
22 |
|
23 |
|
24 |
+
@torch.inference_mode()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
26 |
+
disable_patch_change=False, disable_control_change=False, disable_channels=None, amp=True, generator=None):
|
27 |
if disable_channels is not None:
|
28 |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
|
29 |
else:
|
30 |
disable_channels = []
|
|
|
|
|
31 |
max_token_seq = tokenizer.max_token_seq
|
32 |
if prompt is None:
|
33 |
+
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
|
34 |
input_tensor[0, 0] = tokenizer.bos_id # bos
|
35 |
else:
|
36 |
prompt = prompt[:, :max_token_seq]
|
37 |
if prompt.shape[-1] < max_token_seq:
|
38 |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
|
39 |
mode="constant", constant_values=tokenizer.pad_id)
|
40 |
+
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
|
41 |
+
input_tensor = input_tensor.unsqueeze(0)
|
42 |
cur_len = input_tensor.shape[1]
|
43 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
|
44 |
+
with bar, torch.amp.autocast(device_type=model.device, enabled=amp):
|
45 |
while cur_len < max_len:
|
46 |
end = False
|
47 |
+
hidden = model.forward(input_tensor)[0, -1].unsqueeze(0)
|
48 |
+
next_token_seq = None
|
49 |
event_name = ""
|
50 |
for i in range(max_token_seq):
|
51 |
+
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device)
|
52 |
if i == 0:
|
53 |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
|
54 |
if disable_patch_change:
|
|
|
62 |
if param_name == "channel":
|
63 |
mask_ids = [i for i in mask_ids if i not in disable_channels]
|
64 |
mask[mask_ids] = 1
|
65 |
+
logits = model.forward_token(hidden, next_token_seq)[:, -1:]
|
66 |
+
scores = torch.softmax(logits / temp, dim=-1) * mask
|
67 |
+
sample = model.sample_top_p_k(scores, top_p, top_k, generator=generator)
|
68 |
if i == 0:
|
69 |
next_token_seq = sample
|
70 |
eid = sample.item()
|
|
|
73 |
break
|
74 |
event_name = tokenizer.id_events[eid]
|
75 |
else:
|
76 |
+
next_token_seq = torch.cat([next_token_seq, sample], dim=1)
|
77 |
if len(tokenizer.events[event_name]) == i:
|
78 |
break
|
79 |
if next_token_seq.shape[1] < max_token_seq:
|
80 |
+
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
|
81 |
+
"constant", value=tokenizer.pad_id)
|
82 |
+
next_token_seq = next_token_seq.unsqueeze(1)
|
83 |
+
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
|
84 |
cur_len += 1
|
85 |
bar.update(1)
|
86 |
+
yield next_token_seq.reshape(-1).cpu().numpy()
|
87 |
if end:
|
88 |
break
|
89 |
|
|
|
104 |
max_len = gen_events
|
105 |
if seed_rand:
|
106 |
seed = np.random.randint(0, MAX_SEED)
|
107 |
+
generator = torch.Generator(device).manual_seed(seed)
|
108 |
disable_patch_change = False
|
109 |
disable_channels = None
|
110 |
if tab == 0:
|
|
|
135 |
for token_seq in mid:
|
136 |
mid_seq.append(token_seq.tolist())
|
137 |
max_len += len(mid)
|
138 |
+
|
139 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
140 |
init_msgs = [create_msg("visualizer_clear", None), create_msg("visualizer_append", events)]
|
141 |
t = time.time() + 1
|
142 |
yield mid_seq, None, None, seed, send_msgs(init_msgs)
|
143 |
model = models[model_name]
|
144 |
+
amp = device == "cuda"
|
145 |
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
|
146 |
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
|
147 |
+
disable_channels=disable_channels, amp=amp, generator=generator)
|
148 |
events = []
|
149 |
for i, token_seq in enumerate(midi_generator):
|
150 |
token_seq = token_seq.tolist()
|
|
|
222 |
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
|
223 |
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"],
|
224 |
}
|
225 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
226 |
models = {}
|
227 |
tokenizer = MIDITokenizer()
|
|
|
228 |
for name, (repo_id, path) in models_info.items():
|
229 |
+
|
230 |
+
model_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}model.ckpt")
|
231 |
+
model = MIDIModel(tokenizer).to(device=device)
|
232 |
+
ckpt = torch.load(model_path)
|
233 |
+
state_dict = ckpt.get("state_dict", ckpt)
|
234 |
+
model.load_state_dict(state_dict, strict=False)
|
235 |
+
model.eval()
|
236 |
+
models[name] = model
|
237 |
|
238 |
load_javascript()
|
239 |
app = gr.Blocks()
|
|
|
245 |
"[Open In Colab]"
|
246 |
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
|
247 |
" for faster running and longer generation\n\n"
|
248 |
+
"**Update v1.2**: Optimise the tokenizer and dataset\n\n"
|
249 |
+
f"Device: {device}"
|
250 |
)
|
251 |
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
|
252 |
js_msg.change(None, [js_msg], [], js="""
|
midi_model.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import tqdm
|
6 |
+
from transformers import LlamaModel, LlamaConfig
|
7 |
+
|
8 |
+
from midi_tokenizer import MIDITokenizer
|
9 |
+
|
10 |
+
|
11 |
+
class MIDIModel(nn.Module):
|
12 |
+
def __init__(self, tokenizer: MIDITokenizer, n_layer=12, n_head=16, n_embd=1024, n_inner=4096, flash=False,
|
13 |
+
*args, **kwargs):
|
14 |
+
super(MIDIModel, self).__init__()
|
15 |
+
self.tokenizer = tokenizer
|
16 |
+
self.net = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size,
|
17 |
+
hidden_size=n_embd, num_attention_heads=n_head,
|
18 |
+
num_hidden_layers=n_layer, intermediate_size=n_inner,
|
19 |
+
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
|
20 |
+
self.net_token = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size,
|
21 |
+
hidden_size=n_embd, num_attention_heads=n_head // 4,
|
22 |
+
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
|
23 |
+
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
|
24 |
+
if flash:
|
25 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
26 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
27 |
+
self.lm_head = nn.Linear(n_embd, tokenizer.vocab_size, bias=False)
|
28 |
+
self.device = "cpu"
|
29 |
+
|
30 |
+
def to(self, *args, **kwargs):
|
31 |
+
if "device" in kwargs:
|
32 |
+
self.device = kwargs["device"]
|
33 |
+
return super(MIDIModel, self).to(*args, **kwargs)
|
34 |
+
|
35 |
+
def forward_token(self, hidden_state, x=None):
|
36 |
+
"""
|
37 |
+
|
38 |
+
:param hidden_state: (batch_size, n_embd)
|
39 |
+
:param x: (batch_size, token_sequence_length)
|
40 |
+
:return: (batch_size, 1 + token_sequence_length, vocab_size)
|
41 |
+
"""
|
42 |
+
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd)
|
43 |
+
if x is not None:
|
44 |
+
x = self.net_token.embed_tokens(x)
|
45 |
+
hidden_state = torch.cat([hidden_state, x], dim=1)
|
46 |
+
hidden_state = self.net_token.forward(inputs_embeds=hidden_state).last_hidden_state
|
47 |
+
return self.lm_head(hidden_state)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""
|
51 |
+
:param x: (batch_size, midi_sequence_length, token_sequence_length)
|
52 |
+
:return: hidden (batch_size, midi_sequence_length, n_embd)
|
53 |
+
"""
|
54 |
+
|
55 |
+
# merge token sequence
|
56 |
+
x = self.net.embed_tokens(x)
|
57 |
+
x = x.sum(dim=-2)
|
58 |
+
x = self.net.forward(inputs_embeds=x)
|
59 |
+
return x.last_hidden_state
|
60 |
+
|
61 |
+
def sample_top_p_k(self, probs, p, k, generator=None):
|
62 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
63 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
64 |
+
mask = probs_sum - probs_sort > p
|
65 |
+
probs_sort[mask] = 0.0
|
66 |
+
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
|
67 |
+
mask[:k] = 1
|
68 |
+
probs_sort = probs_sort * mask
|
69 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
70 |
+
shape = probs_sort.shape
|
71 |
+
next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]),
|
72 |
+
num_samples=1, generator=generator).reshape(*shape[:-1], 1)
|
73 |
+
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
|
74 |
+
return next_token
|
75 |
+
|
76 |
+
@torch.inference_mode()
|
77 |
+
def generate(self, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, amp=True, generator=None):
|
78 |
+
tokenizer = self.tokenizer
|
79 |
+
max_token_seq = tokenizer.max_token_seq
|
80 |
+
if prompt is None:
|
81 |
+
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device)
|
82 |
+
input_tensor[0, 0] = tokenizer.bos_id # bos
|
83 |
+
else:
|
84 |
+
prompt = prompt[:, :max_token_seq]
|
85 |
+
if prompt.shape[-1] < max_token_seq:
|
86 |
+
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
|
87 |
+
mode="constant", constant_values=tokenizer.pad_id)
|
88 |
+
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
|
89 |
+
input_tensor = input_tensor.unsqueeze(0)
|
90 |
+
cur_len = input_tensor.shape[1]
|
91 |
+
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
|
92 |
+
with bar, torch.cuda.amp.autocast(enabled=amp):
|
93 |
+
while cur_len < max_len:
|
94 |
+
end = False
|
95 |
+
hidden = self.forward(input_tensor)[0, -1].unsqueeze(0)
|
96 |
+
next_token_seq = None
|
97 |
+
event_name = ""
|
98 |
+
for i in range(max_token_seq):
|
99 |
+
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=self.device)
|
100 |
+
if i == 0:
|
101 |
+
mask[list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
|
102 |
+
else:
|
103 |
+
param_name = tokenizer.events[event_name][i - 1]
|
104 |
+
mask[tokenizer.parameter_ids[param_name]] = 1
|
105 |
+
|
106 |
+
logits = self.forward_token(hidden, next_token_seq)[:, -1:]
|
107 |
+
scores = torch.softmax(logits / temp, dim=-1) * mask
|
108 |
+
sample = self.sample_top_p_k(scores, top_p, top_k, generator=generator)
|
109 |
+
if i == 0:
|
110 |
+
next_token_seq = sample
|
111 |
+
eid = sample.item()
|
112 |
+
if eid == tokenizer.eos_id:
|
113 |
+
end = True
|
114 |
+
break
|
115 |
+
event_name = tokenizer.id_events[eid]
|
116 |
+
else:
|
117 |
+
next_token_seq = torch.cat([next_token_seq, sample], dim=1)
|
118 |
+
if len(tokenizer.events[event_name]) == i:
|
119 |
+
break
|
120 |
+
if next_token_seq.shape[1] < max_token_seq:
|
121 |
+
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
|
122 |
+
"constant", value=tokenizer.pad_id)
|
123 |
+
next_token_seq = next_token_seq.unsqueeze(1)
|
124 |
+
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
|
125 |
+
cur_len += 1
|
126 |
+
bar.update(1)
|
127 |
+
if end:
|
128 |
+
break
|
129 |
+
return input_tensor[0].cpu().numpy()
|
requirements.txt
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
Pillow
|
2 |
numpy
|
3 |
-
|
|
|
4 |
gradio==4.43.0
|
5 |
pyfluidsynth
|
|
|
|
|
|
1 |
Pillow
|
2 |
numpy
|
3 |
+
torch
|
4 |
+
transformers>=4.36
|
5 |
gradio==4.43.0
|
6 |
pyfluidsynth
|
7 |
+
tqdm
|
8 |
+
huggingface_hub
|