Spaces:
Paused
Paused
Update mel_processing.py
Browse files- mel_processing.py +31 -4
mel_processing.py
CHANGED
|
@@ -1,5 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
import torch.utils.data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from librosa.filters import mel as librosa_mel_fn
|
| 4 |
|
| 5 |
MAX_WAV_VALUE = 32768.0
|
|
@@ -52,9 +64,13 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
|
| 52 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 53 |
y = y.squeeze(1)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 59 |
return spec
|
| 60 |
|
|
@@ -90,8 +106,19 @@ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size,
|
|
| 90 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 91 |
y = y.squeeze(1)
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 97 |
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import os
|
| 3 |
+
from packaging import version
|
| 4 |
+
import random
|
| 5 |
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
import torch.utils.data
|
| 9 |
+
import numpy as np
|
| 10 |
+
import librosa
|
| 11 |
+
import librosa.util as librosa_util
|
| 12 |
+
from librosa.util import normalize, pad_center, tiny
|
| 13 |
+
from scipy.signal import get_window
|
| 14 |
+
from scipy.io.wavfile import read
|
| 15 |
from librosa.filters import mel as librosa_mel_fn
|
| 16 |
|
| 17 |
MAX_WAV_VALUE = 32768.0
|
|
|
|
| 64 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 65 |
y = y.squeeze(1)
|
| 66 |
|
| 67 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
| 68 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 69 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
| 70 |
+
else:
|
| 71 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 72 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
| 73 |
+
|
| 74 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 75 |
return spec
|
| 76 |
|
|
|
|
| 106 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
| 107 |
y = y.squeeze(1)
|
| 108 |
|
| 109 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
| 110 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 111 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
| 112 |
+
else:
|
| 113 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 114 |
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
| 115 |
+
'''
|
| 116 |
+
#- reserve : from https://github.com/jaywalnut310/vits/issues/15#issuecomment-1084148441
|
| 117 |
+
with autocast(enabled=False):
|
| 118 |
+
y = y.float()
|
| 119 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
| 120 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
| 121 |
+
'''
|
| 122 |
|
| 123 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 124 |
|