Spaces:
Running
Running
ORI-Muchim
commited on
Commit
•
924e8f7
1
Parent(s):
0ce22b3
Upload 25 files
Browse files- .gitattributes +0 -1
- README.md +3 -3
- app.py +143 -0
- attentions.py +454 -0
- commons.py +161 -0
- export_model.py +13 -0
- mel_processing.py +128 -0
- models.py +1464 -0
- modules.py +390 -0
- monotonic_align/__init__.py +21 -0
- monotonic_align/core.py +36 -0
- pqmf.py +116 -0
- requirements.txt +20 -0
- saved_model/config.json +3 -0
- saved_model/cover.png +3 -0
- saved_model/model.pth +3 -0
- stft.py +295 -0
- stft_loss.py +136 -0
- text/LICENSE +19 -0
- text/__init__.py +56 -0
- text/cleaners.py +12 -0
- text/japanese.py +153 -0
- text/symbols.py +76 -0
- transforms.py +193 -0
- utils.py +258 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: HioriTTS
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: HioriTTS
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import no_grad, LongTensor
|
9 |
+
import commons
|
10 |
+
import utils
|
11 |
+
import gradio as gr
|
12 |
+
from models import SynthesizerTrn
|
13 |
+
from text import text_to_sequence, _clean_text
|
14 |
+
from mel_processing import spectrogram_torch
|
15 |
+
|
16 |
+
from text.symbols import symbols
|
17 |
+
|
18 |
+
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
19 |
+
|
20 |
+
device = 'cpu'
|
21 |
+
|
22 |
+
def get_text(text, hps):
|
23 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
24 |
+
if hps.data.add_blank:
|
25 |
+
text_norm = commons.intersperse(text_norm, 0)
|
26 |
+
text_norm = LongTensor(text_norm)
|
27 |
+
return text_norm
|
28 |
+
|
29 |
+
|
30 |
+
def create_tts_fn(model, hps, speaker_ids):
|
31 |
+
def tts_fn(text, speaker, speed):
|
32 |
+
print(speaker, text)
|
33 |
+
if limitation:
|
34 |
+
text_len = len(text)
|
35 |
+
max_len = 500
|
36 |
+
if len(hps.data.text_cleaners) > 0 and hps.data.text_cleaners[0] == "zh_ja_mixture_cleaners":
|
37 |
+
text_len = len(re.sub("(\[ZH\]|\[JA\])", "", text))
|
38 |
+
if text_len > max_len:
|
39 |
+
return "Error: Text is too long", None
|
40 |
+
|
41 |
+
speaker_id = speaker_ids[speaker]
|
42 |
+
stn_tst = get_text(text, hps)
|
43 |
+
with no_grad():
|
44 |
+
x_tst = stn_tst.unsqueeze(0)
|
45 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
46 |
+
sid = LongTensor([speaker_id])
|
47 |
+
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
48 |
+
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
49 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
50 |
+
return "Success", (hps.data.sampling_rate, audio)
|
51 |
+
|
52 |
+
return tts_fn
|
53 |
+
|
54 |
+
|
55 |
+
def create_to_phoneme_fn(hps):
|
56 |
+
def to_phoneme_fn(text):
|
57 |
+
return _clean_text(text, hps.data.text_cleaners) if text != "" else ""
|
58 |
+
|
59 |
+
return to_phoneme_fn
|
60 |
+
|
61 |
+
|
62 |
+
css = """
|
63 |
+
#advanced-btn {
|
64 |
+
color: white;
|
65 |
+
border-color: black;
|
66 |
+
background: black;
|
67 |
+
font-size: .7rem !important;
|
68 |
+
line-height: 19px;
|
69 |
+
margin-top: 24px;
|
70 |
+
margin-bottom: 12px;
|
71 |
+
padding: 2px 8px;
|
72 |
+
border-radius: 14px !important;
|
73 |
+
}
|
74 |
+
#advanced-options {
|
75 |
+
display: none;
|
76 |
+
margin-bottom: 20px;
|
77 |
+
}
|
78 |
+
"""
|
79 |
+
|
80 |
+
if __name__ == '__main__':
|
81 |
+
models_tts = []
|
82 |
+
name = 'HioriTTS'
|
83 |
+
lang = '日本語 (Japanese)'
|
84 |
+
example = 'プロデューサー、今日も良い一日を!'
|
85 |
+
config_path = f"saved_model/config.json"
|
86 |
+
model_path = f"saved_model/model.pth"
|
87 |
+
cover_path = f"saved_model/cover.png"
|
88 |
+
hps = utils.get_hparams_from_file(config_path)
|
89 |
+
|
90 |
+
if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True:
|
91 |
+
print("Using mel posterior encoder for VITS2")
|
92 |
+
posterior_channels = 80 # vits2
|
93 |
+
hps.data.use_mel_posterior_encoder = True
|
94 |
+
else:
|
95 |
+
print("Using lin posterior encoder for VITS1")
|
96 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
97 |
+
hps.data.use_mel_posterior_encoder = False
|
98 |
+
|
99 |
+
model = SynthesizerTrn(
|
100 |
+
len(symbols),
|
101 |
+
posterior_channels,
|
102 |
+
hps.train.segment_size // hps.data.hop_length,
|
103 |
+
n_speakers=hps.data.n_speakers, #- >0 for multi speaker
|
104 |
+
**hps.model)
|
105 |
+
utils.load_checkpoint(model_path, model, None)
|
106 |
+
model.eval()
|
107 |
+
speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
|
108 |
+
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
|
109 |
+
|
110 |
+
t = 'vits'
|
111 |
+
models_tts.append((name, cover_path, speakers, lang, example,
|
112 |
+
symbols, create_tts_fn(model, hps, speaker_ids),
|
113 |
+
create_to_phoneme_fn(hps)))
|
114 |
+
|
115 |
+
|
116 |
+
app = gr.Blocks(css=css)
|
117 |
+
|
118 |
+
with app:
|
119 |
+
gr.Markdown("# HioriTTS Using VITS2 Model\n\n"
|
120 |
+
"## Model Updated: VITS -> VITS2\n\n"
|
121 |
+
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=ORI-Muchim.HioriTTS)\n\n")
|
122 |
+
with gr.Tabs():
|
123 |
+
with gr.TabItem("TTS"):
|
124 |
+
with gr.Tabs():
|
125 |
+
for i, (name, cover_path, speakers, lang, example, symbols, tts_fn,
|
126 |
+
to_phoneme_fn) in enumerate(models_tts):
|
127 |
+
with gr.TabItem(f"Hiori"):
|
128 |
+
with gr.Column():
|
129 |
+
gr.Markdown(f"## {name}\n\n"
|
130 |
+
f"![cover](file/{cover_path})\n\n"
|
131 |
+
f"lang: {lang}")
|
132 |
+
tts_input1 = gr.TextArea(label="Text (500 words limitation)", value=example,
|
133 |
+
elem_id=f"tts-input{i}")
|
134 |
+
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
135 |
+
type="index", value=speakers[0])
|
136 |
+
tts_input3 = gr.Slider(label="Speed", value=1.2, minimum=0.1, maximum=2, step=0.1)
|
137 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
138 |
+
tts_output1 = gr.Textbox(label="Output Message")
|
139 |
+
tts_output2 = gr.Audio(label="Output Audio")
|
140 |
+
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3],
|
141 |
+
[tts_output1, tts_output2])
|
142 |
+
|
143 |
+
app.queue(concurrency_count=3).launch(show_api=False)
|
attentions.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
import modules
|
11 |
+
from modules import LayerNorm
|
12 |
+
|
13 |
+
class Encoder(nn.Module): #backward compatible vits2 encoder
|
14 |
+
def __init__(
|
15 |
+
self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
self.hidden_channels = hidden_channels
|
19 |
+
self.filter_channels = filter_channels
|
20 |
+
self.n_heads = n_heads
|
21 |
+
self.n_layers = n_layers
|
22 |
+
self.kernel_size = kernel_size
|
23 |
+
self.p_dropout = p_dropout
|
24 |
+
self.window_size = window_size
|
25 |
+
|
26 |
+
self.drop = nn.Dropout(p_dropout)
|
27 |
+
self.attn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_1 = nn.ModuleList()
|
29 |
+
self.ffn_layers = nn.ModuleList()
|
30 |
+
self.norm_layers_2 = nn.ModuleList()
|
31 |
+
# if kwargs has spk_emb_dim, then add a linear layer to project spk_emb_dim to hidden_channels
|
32 |
+
self.cond_layer_idx = self.n_layers
|
33 |
+
if 'gin_channels' in kwargs:
|
34 |
+
self.gin_channels = kwargs['gin_channels']
|
35 |
+
if self.gin_channels != 0:
|
36 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
37 |
+
# vits2 says 3rd block, so idx is 2 by default
|
38 |
+
self.cond_layer_idx = kwargs['cond_layer_idx'] if 'cond_layer_idx' in kwargs else 2
|
39 |
+
print(self.gin_channels, self.cond_layer_idx)
|
40 |
+
assert self.cond_layer_idx < self.n_layers, 'cond_layer_idx should be less than n_layers'
|
41 |
+
|
42 |
+
for i in range(self.n_layers):
|
43 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
44 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
45 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
46 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
47 |
+
|
48 |
+
def forward(self, x, x_mask, g=None):
|
49 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
50 |
+
x = x * x_mask
|
51 |
+
for i in range(self.n_layers):
|
52 |
+
if i == self.cond_layer_idx and g is not None:
|
53 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
54 |
+
g = g.transpose(1, 2)
|
55 |
+
x = x + g
|
56 |
+
x = x * x_mask
|
57 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
58 |
+
y = self.drop(y)
|
59 |
+
x = self.norm_layers_1[i](x + y)
|
60 |
+
|
61 |
+
y = self.ffn_layers[i](x, x_mask)
|
62 |
+
y = self.drop(y)
|
63 |
+
x = self.norm_layers_2[i](x + y)
|
64 |
+
x = x * x_mask
|
65 |
+
return x
|
66 |
+
|
67 |
+
class Decoder(nn.Module):
|
68 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
69 |
+
super().__init__()
|
70 |
+
self.hidden_channels = hidden_channels
|
71 |
+
self.filter_channels = filter_channels
|
72 |
+
self.n_heads = n_heads
|
73 |
+
self.n_layers = n_layers
|
74 |
+
self.kernel_size = kernel_size
|
75 |
+
self.p_dropout = p_dropout
|
76 |
+
self.proximal_bias = proximal_bias
|
77 |
+
self.proximal_init = proximal_init
|
78 |
+
|
79 |
+
self.drop = nn.Dropout(p_dropout)
|
80 |
+
self.self_attn_layers = nn.ModuleList()
|
81 |
+
self.norm_layers_0 = nn.ModuleList()
|
82 |
+
self.encdec_attn_layers = nn.ModuleList()
|
83 |
+
self.norm_layers_1 = nn.ModuleList()
|
84 |
+
self.ffn_layers = nn.ModuleList()
|
85 |
+
self.norm_layers_2 = nn.ModuleList()
|
86 |
+
for i in range(self.n_layers):
|
87 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
88 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
89 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
90 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
91 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
92 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
93 |
+
|
94 |
+
def forward(self, x, x_mask, h, h_mask):
|
95 |
+
"""
|
96 |
+
x: decoder input
|
97 |
+
h: encoder output
|
98 |
+
"""
|
99 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
100 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
101 |
+
x = x * x_mask
|
102 |
+
for i in range(self.n_layers):
|
103 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
104 |
+
y = self.drop(y)
|
105 |
+
x = self.norm_layers_0[i](x + y)
|
106 |
+
|
107 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
108 |
+
y = self.drop(y)
|
109 |
+
x = self.norm_layers_1[i](x + y)
|
110 |
+
|
111 |
+
y = self.ffn_layers[i](x, x_mask)
|
112 |
+
y = self.drop(y)
|
113 |
+
x = self.norm_layers_2[i](x + y)
|
114 |
+
x = x * x_mask
|
115 |
+
return x
|
116 |
+
|
117 |
+
|
118 |
+
class MultiHeadAttention(nn.Module):
|
119 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
120 |
+
super().__init__()
|
121 |
+
assert channels % n_heads == 0
|
122 |
+
|
123 |
+
self.channels = channels
|
124 |
+
self.out_channels = out_channels
|
125 |
+
self.n_heads = n_heads
|
126 |
+
self.p_dropout = p_dropout
|
127 |
+
self.window_size = window_size
|
128 |
+
self.heads_share = heads_share
|
129 |
+
self.block_length = block_length
|
130 |
+
self.proximal_bias = proximal_bias
|
131 |
+
self.proximal_init = proximal_init
|
132 |
+
self.attn = None
|
133 |
+
|
134 |
+
self.k_channels = channels // n_heads
|
135 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
136 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
137 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
138 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
139 |
+
self.drop = nn.Dropout(p_dropout)
|
140 |
+
|
141 |
+
if window_size is not None:
|
142 |
+
n_heads_rel = 1 if heads_share else n_heads
|
143 |
+
rel_stddev = self.k_channels**-0.5
|
144 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
145 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
146 |
+
|
147 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
148 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
149 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
150 |
+
if proximal_init:
|
151 |
+
with torch.no_grad():
|
152 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
153 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
154 |
+
|
155 |
+
def forward(self, x, c, attn_mask=None):
|
156 |
+
q = self.conv_q(x)
|
157 |
+
k = self.conv_k(c)
|
158 |
+
v = self.conv_v(c)
|
159 |
+
|
160 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
161 |
+
|
162 |
+
x = self.conv_o(x)
|
163 |
+
return x
|
164 |
+
|
165 |
+
def attention(self, query, key, value, mask=None):
|
166 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
167 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
168 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
169 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
170 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
171 |
+
|
172 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
173 |
+
if self.window_size is not None:
|
174 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
175 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
176 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
177 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
178 |
+
scores = scores + scores_local
|
179 |
+
if self.proximal_bias:
|
180 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
181 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
182 |
+
if mask is not None:
|
183 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
184 |
+
if self.block_length is not None:
|
185 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
186 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
187 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
188 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
189 |
+
p_attn = self.drop(p_attn)
|
190 |
+
output = torch.matmul(p_attn, value)
|
191 |
+
if self.window_size is not None:
|
192 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
193 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
194 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
195 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
196 |
+
return output, p_attn
|
197 |
+
|
198 |
+
def _matmul_with_relative_values(self, x, y):
|
199 |
+
"""
|
200 |
+
x: [b, h, l, m]
|
201 |
+
y: [h or 1, m, d]
|
202 |
+
ret: [b, h, l, d]
|
203 |
+
"""
|
204 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
205 |
+
return ret
|
206 |
+
|
207 |
+
def _matmul_with_relative_keys(self, x, y):
|
208 |
+
"""
|
209 |
+
x: [b, h, l, d]
|
210 |
+
y: [h or 1, m, d]
|
211 |
+
ret: [b, h, l, m]
|
212 |
+
"""
|
213 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
214 |
+
return ret
|
215 |
+
|
216 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
217 |
+
max_relative_position = 2 * self.window_size + 1
|
218 |
+
# Pad first before slice to avoid using cond ops.
|
219 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
220 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
221 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
222 |
+
if pad_length > 0:
|
223 |
+
padded_relative_embeddings = F.pad(
|
224 |
+
relative_embeddings,
|
225 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
226 |
+
else:
|
227 |
+
padded_relative_embeddings = relative_embeddings
|
228 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
229 |
+
return used_relative_embeddings
|
230 |
+
|
231 |
+
def _relative_position_to_absolute_position(self, x):
|
232 |
+
"""
|
233 |
+
x: [b, h, l, 2*l-1]
|
234 |
+
ret: [b, h, l, l]
|
235 |
+
"""
|
236 |
+
batch, heads, length, _ = x.size()
|
237 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
238 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
239 |
+
|
240 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
241 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
242 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
243 |
+
|
244 |
+
# Reshape and slice out the padded elements.
|
245 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
246 |
+
return x_final
|
247 |
+
|
248 |
+
def _absolute_position_to_relative_position(self, x):
|
249 |
+
"""
|
250 |
+
x: [b, h, l, l]
|
251 |
+
ret: [b, h, l, 2*l-1]
|
252 |
+
"""
|
253 |
+
batch, heads, length, _ = x.size()
|
254 |
+
# padd along column
|
255 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
256 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
257 |
+
# add 0's in the beginning that will skew the elements after reshape
|
258 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
259 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
260 |
+
return x_final
|
261 |
+
|
262 |
+
def _attention_bias_proximal(self, length):
|
263 |
+
"""Bias for self-attention to encourage attention to close positions.
|
264 |
+
Args:
|
265 |
+
length: an integer scalar.
|
266 |
+
Returns:
|
267 |
+
a Tensor with shape [1, 1, length, length]
|
268 |
+
"""
|
269 |
+
r = torch.arange(length, dtype=torch.float32)
|
270 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
271 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
272 |
+
|
273 |
+
|
274 |
+
class FFN(nn.Module):
|
275 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
276 |
+
super().__init__()
|
277 |
+
self.in_channels = in_channels
|
278 |
+
self.out_channels = out_channels
|
279 |
+
self.filter_channels = filter_channels
|
280 |
+
self.kernel_size = kernel_size
|
281 |
+
self.p_dropout = p_dropout
|
282 |
+
self.activation = activation
|
283 |
+
self.causal = causal
|
284 |
+
|
285 |
+
if causal:
|
286 |
+
self.padding = self._causal_padding
|
287 |
+
else:
|
288 |
+
self.padding = self._same_padding
|
289 |
+
|
290 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
291 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
292 |
+
self.drop = nn.Dropout(p_dropout)
|
293 |
+
|
294 |
+
def forward(self, x, x_mask):
|
295 |
+
x = self.conv_1(self.padding(x * x_mask))
|
296 |
+
if self.activation == "gelu":
|
297 |
+
x = x * torch.sigmoid(1.702 * x)
|
298 |
+
else:
|
299 |
+
x = torch.relu(x)
|
300 |
+
x = self.drop(x)
|
301 |
+
x = self.conv_2(self.padding(x * x_mask))
|
302 |
+
return x * x_mask
|
303 |
+
|
304 |
+
def _causal_padding(self, x):
|
305 |
+
if self.kernel_size == 1:
|
306 |
+
return x
|
307 |
+
pad_l = self.kernel_size - 1
|
308 |
+
pad_r = 0
|
309 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
310 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
311 |
+
return x
|
312 |
+
|
313 |
+
def _same_padding(self, x):
|
314 |
+
if self.kernel_size == 1:
|
315 |
+
return x
|
316 |
+
pad_l = (self.kernel_size - 1) // 2
|
317 |
+
pad_r = self.kernel_size // 2
|
318 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
319 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
320 |
+
return x
|
321 |
+
|
322 |
+
|
323 |
+
class Depthwise_Separable_Conv1D(nn.Module):
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
in_channels,
|
327 |
+
out_channels,
|
328 |
+
kernel_size,
|
329 |
+
stride = 1,
|
330 |
+
padding = 0,
|
331 |
+
dilation = 1,
|
332 |
+
bias = True,
|
333 |
+
padding_mode = 'zeros', # TODO: refine this type
|
334 |
+
device=None,
|
335 |
+
dtype=None
|
336 |
+
):
|
337 |
+
super().__init__()
|
338 |
+
self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
|
339 |
+
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
|
340 |
+
|
341 |
+
def forward(self, input):
|
342 |
+
return self.point_conv(self.depth_conv(input))
|
343 |
+
|
344 |
+
def weight_norm(self):
|
345 |
+
self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
|
346 |
+
self.point_conv = weight_norm(self.point_conv, name = 'weight')
|
347 |
+
|
348 |
+
def remove_weight_norm(self):
|
349 |
+
self.depth_conv = remove_weight_norm(self.depth_conv, name = 'weight')
|
350 |
+
self.point_conv = remove_weight_norm(self.point_conv, name = 'weight')
|
351 |
+
|
352 |
+
class Depthwise_Separable_TransposeConv1D(nn.Module):
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
in_channels,
|
356 |
+
out_channels,
|
357 |
+
kernel_size,
|
358 |
+
stride = 1,
|
359 |
+
padding = 0,
|
360 |
+
output_padding = 0,
|
361 |
+
bias = True,
|
362 |
+
dilation = 1,
|
363 |
+
padding_mode = 'zeros', # TODO: refine this type
|
364 |
+
device=None,
|
365 |
+
dtype=None
|
366 |
+
):
|
367 |
+
super().__init__()
|
368 |
+
self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels,stride = stride,output_padding=output_padding,padding=padding,dilation=dilation,bias=bias,padding_mode=padding_mode,device=device,dtype=dtype)
|
369 |
+
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, device=device,dtype=dtype)
|
370 |
+
|
371 |
+
def forward(self, input):
|
372 |
+
return self.point_conv(self.depth_conv(input))
|
373 |
+
|
374 |
+
def weight_norm(self):
|
375 |
+
self.depth_conv = weight_norm(self.depth_conv, name = 'weight')
|
376 |
+
self.point_conv = weight_norm(self.point_conv, name = 'weight')
|
377 |
+
|
378 |
+
def remove_weight_norm(self):
|
379 |
+
remove_weight_norm(self.depth_conv, name = 'weight')
|
380 |
+
remove_weight_norm(self.point_conv, name = 'weight')
|
381 |
+
|
382 |
+
|
383 |
+
def weight_norm_modules(module, name = 'weight', dim = 0):
|
384 |
+
if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
|
385 |
+
module.weight_norm()
|
386 |
+
return module
|
387 |
+
else:
|
388 |
+
return weight_norm(module,name,dim)
|
389 |
+
|
390 |
+
def remove_weight_norm_modules(module, name = 'weight'):
|
391 |
+
if isinstance(module,Depthwise_Separable_Conv1D) or isinstance(module,Depthwise_Separable_TransposeConv1D):
|
392 |
+
module.remove_weight_norm()
|
393 |
+
else:
|
394 |
+
remove_weight_norm(module,name)
|
395 |
+
|
396 |
+
class FFT(nn.Module):
|
397 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
|
398 |
+
proximal_bias=False, proximal_init=True, isflow = False, **kwargs):
|
399 |
+
super().__init__()
|
400 |
+
self.hidden_channels = hidden_channels
|
401 |
+
self.filter_channels = filter_channels
|
402 |
+
self.n_heads = n_heads
|
403 |
+
self.n_layers = n_layers
|
404 |
+
self.kernel_size = kernel_size
|
405 |
+
self.p_dropout = p_dropout
|
406 |
+
self.proximal_bias = proximal_bias
|
407 |
+
self.proximal_init = proximal_init
|
408 |
+
if isflow and 'gin_channels' in kwargs and kwargs["gin_channels"] > 0:
|
409 |
+
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1)
|
410 |
+
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
411 |
+
self.cond_layer = weight_norm_modules(cond_layer, name='weight')
|
412 |
+
self.gin_channels = kwargs["gin_channels"]
|
413 |
+
self.drop = nn.Dropout(p_dropout)
|
414 |
+
self.self_attn_layers = nn.ModuleList()
|
415 |
+
self.norm_layers_0 = nn.ModuleList()
|
416 |
+
self.ffn_layers = nn.ModuleList()
|
417 |
+
self.norm_layers_1 = nn.ModuleList()
|
418 |
+
for i in range(self.n_layers):
|
419 |
+
self.self_attn_layers.append(
|
420 |
+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
|
421 |
+
proximal_init=proximal_init))
|
422 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
423 |
+
self.ffn_layers.append(
|
424 |
+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
425 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
426 |
+
|
427 |
+
def forward(self, x, x_mask, g = None):
|
428 |
+
"""
|
429 |
+
x: decoder input
|
430 |
+
h: encoder output
|
431 |
+
"""
|
432 |
+
if g is not None:
|
433 |
+
g = self.cond_layer(g)
|
434 |
+
|
435 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
436 |
+
x = x * x_mask
|
437 |
+
for i in range(self.n_layers):
|
438 |
+
if g is not None:
|
439 |
+
x = self.cond_pre(x)
|
440 |
+
cond_offset = i * 2 * self.hidden_channels
|
441 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
442 |
+
x = commons.fused_add_tanh_sigmoid_multiply(
|
443 |
+
x,
|
444 |
+
g_l,
|
445 |
+
torch.IntTensor([self.hidden_channels]))
|
446 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
447 |
+
y = self.drop(y)
|
448 |
+
x = self.norm_layers_0[i](x + y)
|
449 |
+
|
450 |
+
y = self.ffn_layers[i](x, x_mask)
|
451 |
+
y = self.drop(y)
|
452 |
+
x = self.norm_layers_1[i](x + y)
|
453 |
+
x = x * x_mask
|
454 |
+
return x
|
commons.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size*dilation - dilation)/2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def intersperse(lst, item):
|
25 |
+
result = [item] * (len(lst) * 2 + 1)
|
26 |
+
result[1::2] = lst
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
+
"""KL(P||Q)"""
|
32 |
+
kl = (logs_q - logs_p) - 0.5
|
33 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(
|
68 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
69 |
+
position = torch.arange(length, dtype=torch.float)
|
70 |
+
num_timescales = channels // 2
|
71 |
+
log_timescale_increment = (
|
72 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
73 |
+
(num_timescales - 1))
|
74 |
+
inv_timescales = min_timescale * torch.exp(
|
75 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
l = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in l for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
device = duration.device
|
134 |
+
|
135 |
+
b, _, t_y, t_x = mask.shape
|
136 |
+
cum_duration = torch.cumsum(duration, -1)
|
137 |
+
|
138 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
139 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
140 |
+
path = path.view(b, t_x, t_y)
|
141 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
142 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
143 |
+
return path
|
144 |
+
|
145 |
+
|
146 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
+
if isinstance(parameters, torch.Tensor):
|
148 |
+
parameters = [parameters]
|
149 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
+
norm_type = float(norm_type)
|
151 |
+
if clip_value is not None:
|
152 |
+
clip_value = float(clip_value)
|
153 |
+
|
154 |
+
total_norm = 0
|
155 |
+
for p in parameters:
|
156 |
+
param_norm = p.grad.data.norm(norm_type)
|
157 |
+
total_norm += param_norm.item() ** norm_type
|
158 |
+
if clip_value is not None:
|
159 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
+
total_norm = total_norm ** (1. / norm_type)
|
161 |
+
return total_norm
|
export_model.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
if __name__ == '__main__':
|
4 |
+
model_path = "saved_model/model.pth"
|
5 |
+
output_path = "saved_model/model1.pth"
|
6 |
+
checkpoint_dict = torch.load(model_path, map_location='cpu')
|
7 |
+
checkpoint_dict_new = {}
|
8 |
+
for k, v in checkpoint_dict.items():
|
9 |
+
if k == "optimizer":
|
10 |
+
print("remove optimizer")
|
11 |
+
continue
|
12 |
+
checkpoint_dict_new[k] = v
|
13 |
+
torch.save(checkpoint_dict_new, output_path)
|
mel_processing.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from packaging import version
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.utils.data
|
9 |
+
import numpy as np
|
10 |
+
import librosa
|
11 |
+
import librosa.util as librosa_util
|
12 |
+
from librosa.util import normalize, pad_center, tiny
|
13 |
+
from scipy.signal import get_window
|
14 |
+
from scipy.io.wavfile import read
|
15 |
+
from librosa.filters import mel as librosa_mel_fn
|
16 |
+
|
17 |
+
MAX_WAV_VALUE = 32768.0
|
18 |
+
|
19 |
+
|
20 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
21 |
+
"""
|
22 |
+
PARAMS
|
23 |
+
------
|
24 |
+
C: compression factor
|
25 |
+
"""
|
26 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
27 |
+
|
28 |
+
|
29 |
+
def dynamic_range_decompression_torch(x, C=1):
|
30 |
+
"""
|
31 |
+
PARAMS
|
32 |
+
------
|
33 |
+
C: compression factor used to compress
|
34 |
+
"""
|
35 |
+
return torch.exp(x) / C
|
36 |
+
|
37 |
+
|
38 |
+
def spectral_normalize_torch(magnitudes):
|
39 |
+
output = dynamic_range_compression_torch(magnitudes)
|
40 |
+
return output
|
41 |
+
|
42 |
+
|
43 |
+
def spectral_de_normalize_torch(magnitudes):
|
44 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
45 |
+
return output
|
46 |
+
|
47 |
+
|
48 |
+
mel_basis = {}
|
49 |
+
hann_window = {}
|
50 |
+
|
51 |
+
|
52 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
53 |
+
if torch.min(y) < -1.:
|
54 |
+
print('min value is ', torch.min(y))
|
55 |
+
if torch.max(y) > 1.:
|
56 |
+
print('max value is ', torch.max(y))
|
57 |
+
|
58 |
+
global hann_window
|
59 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
60 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
61 |
+
if wnsize_dtype_device not in hann_window:
|
62 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
63 |
+
|
64 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
65 |
+
y = y.squeeze(1)
|
66 |
+
|
67 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
68 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
69 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
70 |
+
else:
|
71 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
72 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
79 |
+
global mel_basis
|
80 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
81 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
82 |
+
if fmax_dtype_device not in mel_basis:
|
83 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
84 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
85 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
86 |
+
spec = spectral_normalize_torch(spec)
|
87 |
+
return spec
|
88 |
+
|
89 |
+
|
90 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
91 |
+
if torch.min(y) < -1.:
|
92 |
+
print('min value is ', torch.min(y))
|
93 |
+
if torch.max(y) > 1.:
|
94 |
+
print('max value is ', torch.max(y))
|
95 |
+
|
96 |
+
global mel_basis, hann_window
|
97 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
98 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
99 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
100 |
+
if fmax_dtype_device not in mel_basis:
|
101 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
102 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
103 |
+
if wnsize_dtype_device not in hann_window:
|
104 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
105 |
+
|
106 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
107 |
+
y = y.squeeze(1)
|
108 |
+
|
109 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
110 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
111 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
112 |
+
else:
|
113 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
114 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
115 |
+
'''
|
116 |
+
#- reserve : from https://github.com/jaywalnut310/vits/issues/15#issuecomment-1084148441
|
117 |
+
with autocast(enabled=False):
|
118 |
+
y = y.float()
|
119 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
120 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
121 |
+
'''
|
122 |
+
|
123 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
124 |
+
|
125 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
126 |
+
spec = spectral_normalize_torch(spec)
|
127 |
+
|
128 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,1464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import modules
|
9 |
+
import attentions
|
10 |
+
import monotonic_align
|
11 |
+
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
|
16 |
+
from pqmf import PQMF
|
17 |
+
from stft import TorchSTFT, OnnxSTFT
|
18 |
+
|
19 |
+
AVAILABLE_FLOW_TYPES = ["pre_conv", "pre_conv2", "fft", "mono_layer_inter_residual", "mono_layer_post_residual"]
|
20 |
+
AVAILABLE_DURATION_DISCRIMINATOR_TYPES = {"dur_disc_1": "DurationDiscriminator", "dur_disc_2": "DurationDiscriminator2"}
|
21 |
+
|
22 |
+
|
23 |
+
class StochasticDurationPredictor(nn.Module):
|
24 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
25 |
+
super().__init__()
|
26 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
27 |
+
self.in_channels = in_channels
|
28 |
+
self.filter_channels = filter_channels
|
29 |
+
self.kernel_size = kernel_size
|
30 |
+
self.p_dropout = p_dropout
|
31 |
+
self.n_flows = n_flows
|
32 |
+
self.gin_channels = gin_channels
|
33 |
+
|
34 |
+
self.log_flow = modules.Log()
|
35 |
+
self.flows = nn.ModuleList()
|
36 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
37 |
+
for i in range(n_flows):
|
38 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
39 |
+
self.flows.append(modules.Flip())
|
40 |
+
|
41 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
42 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
43 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
44 |
+
self.post_flows = nn.ModuleList()
|
45 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
46 |
+
for i in range(4):
|
47 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
48 |
+
self.post_flows.append(modules.Flip())
|
49 |
+
|
50 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
51 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
52 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
53 |
+
if gin_channels != 0:
|
54 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
55 |
+
|
56 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
57 |
+
x = torch.detach(x)
|
58 |
+
x = self.pre(x)
|
59 |
+
if g is not None:
|
60 |
+
g = torch.detach(g)
|
61 |
+
x = x + self.cond(g)
|
62 |
+
x = self.convs(x, x_mask)
|
63 |
+
x = self.proj(x) * x_mask
|
64 |
+
|
65 |
+
if not reverse:
|
66 |
+
flows = self.flows
|
67 |
+
assert w is not None
|
68 |
+
|
69 |
+
logdet_tot_q = 0
|
70 |
+
h_w = self.post_pre(w)
|
71 |
+
h_w = self.post_convs(h_w, x_mask)
|
72 |
+
h_w = self.post_proj(h_w) * x_mask
|
73 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
74 |
+
z_q = e_q
|
75 |
+
for flow in self.post_flows:
|
76 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
77 |
+
logdet_tot_q += logdet_q
|
78 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
79 |
+
u = torch.sigmoid(z_u) * x_mask
|
80 |
+
z0 = (w - u) * x_mask
|
81 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
82 |
+
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
|
83 |
+
|
84 |
+
logdet_tot = 0
|
85 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
86 |
+
logdet_tot += logdet
|
87 |
+
z = torch.cat([z0, z1], 1)
|
88 |
+
for flow in flows:
|
89 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
90 |
+
logdet_tot = logdet_tot + logdet
|
91 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
|
92 |
+
return nll + logq # [b]
|
93 |
+
else:
|
94 |
+
flows = list(reversed(self.flows))
|
95 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
96 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
97 |
+
for flow in flows:
|
98 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
99 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
100 |
+
logw = z0
|
101 |
+
return logw
|
102 |
+
|
103 |
+
|
104 |
+
class DurationPredictor(nn.Module):
|
105 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
106 |
+
super().__init__()
|
107 |
+
|
108 |
+
self.in_channels = in_channels
|
109 |
+
self.filter_channels = filter_channels
|
110 |
+
self.kernel_size = kernel_size
|
111 |
+
self.p_dropout = p_dropout
|
112 |
+
self.gin_channels = gin_channels
|
113 |
+
|
114 |
+
self.drop = nn.Dropout(p_dropout)
|
115 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
116 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
117 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
118 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
119 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
120 |
+
|
121 |
+
if gin_channels != 0:
|
122 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
123 |
+
|
124 |
+
def forward(self, x, x_mask, g=None):
|
125 |
+
x = torch.detach(x)
|
126 |
+
if g is not None:
|
127 |
+
g = torch.detach(g)
|
128 |
+
x = x + self.cond(g)
|
129 |
+
x = self.conv_1(x * x_mask)
|
130 |
+
x = torch.relu(x)
|
131 |
+
x = self.norm_1(x)
|
132 |
+
x = self.drop(x)
|
133 |
+
x = self.conv_2(x * x_mask)
|
134 |
+
x = torch.relu(x)
|
135 |
+
x = self.norm_2(x)
|
136 |
+
x = self.drop(x)
|
137 |
+
x = self.proj(x * x_mask)
|
138 |
+
return x * x_mask
|
139 |
+
|
140 |
+
|
141 |
+
class DurationDiscriminator(nn.Module): # vits2
|
142 |
+
# TODO : not using "spk conditioning" for now according to the paper.
|
143 |
+
# Can be a better discriminator if we use it.
|
144 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
145 |
+
super().__init__()
|
146 |
+
|
147 |
+
self.in_channels = in_channels
|
148 |
+
self.filter_channels = filter_channels
|
149 |
+
self.kernel_size = kernel_size
|
150 |
+
self.p_dropout = p_dropout
|
151 |
+
self.gin_channels = gin_channels
|
152 |
+
|
153 |
+
self.drop = nn.Dropout(p_dropout)
|
154 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
155 |
+
# self.norm_1 = modules.LayerNorm(filter_channels)
|
156 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
157 |
+
# self.norm_2 = modules.LayerNorm(filter_channels)
|
158 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
159 |
+
|
160 |
+
self.pre_out_conv_1 = nn.Conv1d(2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
161 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
162 |
+
self.pre_out_conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
163 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
164 |
+
|
165 |
+
# if gin_channels != 0:
|
166 |
+
# self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
167 |
+
|
168 |
+
self.output_layer = nn.Sequential(
|
169 |
+
nn.Linear(filter_channels, 1),
|
170 |
+
nn.Sigmoid()
|
171 |
+
)
|
172 |
+
|
173 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
174 |
+
dur = self.dur_proj(dur)
|
175 |
+
x = torch.cat([x, dur], dim=1)
|
176 |
+
x = self.pre_out_conv_1(x * x_mask)
|
177 |
+
# x = torch.relu(x)
|
178 |
+
# x = self.pre_out_norm_1(x)
|
179 |
+
# x = self.drop(x)
|
180 |
+
x = self.pre_out_conv_2(x * x_mask)
|
181 |
+
# x = torch.relu(x)
|
182 |
+
# x = self.pre_out_norm_2(x)
|
183 |
+
# x = self.drop(x)
|
184 |
+
x = x * x_mask
|
185 |
+
x = x.transpose(1, 2)
|
186 |
+
output_prob = self.output_layer(x)
|
187 |
+
return output_prob
|
188 |
+
|
189 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
190 |
+
x = torch.detach(x)
|
191 |
+
# if g is not None:
|
192 |
+
# g = torch.detach(g)
|
193 |
+
# x = x + self.cond(g)
|
194 |
+
x = self.conv_1(x * x_mask)
|
195 |
+
# x = torch.relu(x)
|
196 |
+
# x = self.norm_1(x)
|
197 |
+
# x = self.drop(x)
|
198 |
+
x = self.conv_2(x * x_mask)
|
199 |
+
# x = torch.relu(x)
|
200 |
+
# x = self.norm_2(x)
|
201 |
+
# x = self.drop(x)
|
202 |
+
|
203 |
+
output_probs = []
|
204 |
+
for dur in [dur_r, dur_hat]:
|
205 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
206 |
+
output_probs.append(output_prob)
|
207 |
+
|
208 |
+
return output_probs
|
209 |
+
|
210 |
+
|
211 |
+
class DurationDiscriminator2(nn.Module): # vits2 - DurationDiscriminator2
|
212 |
+
# TODO : not using "spk conditioning" for now according to the paper.
|
213 |
+
# Can be a better discriminator if we use it.
|
214 |
+
def __init__(
|
215 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
216 |
+
):
|
217 |
+
super().__init__()
|
218 |
+
|
219 |
+
self.in_channels = in_channels
|
220 |
+
self.filter_channels = filter_channels
|
221 |
+
self.kernel_size = kernel_size
|
222 |
+
self.p_dropout = p_dropout
|
223 |
+
self.gin_channels = gin_channels
|
224 |
+
|
225 |
+
self.conv_1 = nn.Conv1d(
|
226 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
227 |
+
)
|
228 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
229 |
+
self.conv_2 = nn.Conv1d(
|
230 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
231 |
+
)
|
232 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
233 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
234 |
+
|
235 |
+
self.pre_out_conv_1 = nn.Conv1d(
|
236 |
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
237 |
+
)
|
238 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
239 |
+
self.pre_out_conv_2 = nn.Conv1d(
|
240 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
241 |
+
)
|
242 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
243 |
+
|
244 |
+
# if gin_channels != 0:
|
245 |
+
# self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
246 |
+
|
247 |
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
248 |
+
|
249 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
250 |
+
dur = self.dur_proj(dur)
|
251 |
+
x = torch.cat([x, dur], dim=1)
|
252 |
+
x = self.pre_out_conv_1(x * x_mask)
|
253 |
+
x = torch.relu(x)
|
254 |
+
x = self.pre_out_norm_1(x)
|
255 |
+
x = self.pre_out_conv_2(x * x_mask)
|
256 |
+
x = torch.relu(x)
|
257 |
+
x = self.pre_out_norm_2(x)
|
258 |
+
x = x * x_mask
|
259 |
+
x = x.transpose(1, 2)
|
260 |
+
output_prob = self.output_layer(x)
|
261 |
+
return output_prob
|
262 |
+
|
263 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
264 |
+
x = torch.detach(x)
|
265 |
+
# if g is not None:
|
266 |
+
# g = torch.detach(g)
|
267 |
+
# x = x + self.cond(g)
|
268 |
+
x = self.conv_1(x * x_mask)
|
269 |
+
x = torch.relu(x)
|
270 |
+
x = self.norm_1(x)
|
271 |
+
x = self.conv_2(x * x_mask)
|
272 |
+
x = torch.relu(x)
|
273 |
+
x = self.norm_2(x)
|
274 |
+
|
275 |
+
output_probs = []
|
276 |
+
for dur in [dur_r, dur_hat]:
|
277 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
278 |
+
output_probs.append([output_prob])
|
279 |
+
|
280 |
+
return output_probs
|
281 |
+
|
282 |
+
|
283 |
+
class TextEncoder(nn.Module):
|
284 |
+
def __init__(self,
|
285 |
+
n_vocab,
|
286 |
+
out_channels,
|
287 |
+
hidden_channels,
|
288 |
+
filter_channels,
|
289 |
+
n_heads,
|
290 |
+
n_layers,
|
291 |
+
kernel_size,
|
292 |
+
p_dropout,
|
293 |
+
gin_channels=0):
|
294 |
+
super().__init__()
|
295 |
+
self.n_vocab = n_vocab
|
296 |
+
self.out_channels = out_channels
|
297 |
+
self.hidden_channels = hidden_channels
|
298 |
+
self.filter_channels = filter_channels
|
299 |
+
self.n_heads = n_heads
|
300 |
+
self.n_layers = n_layers
|
301 |
+
self.kernel_size = kernel_size
|
302 |
+
self.p_dropout = p_dropout
|
303 |
+
self.gin_channels = gin_channels
|
304 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
305 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
|
306 |
+
|
307 |
+
self.encoder = attentions.Encoder(
|
308 |
+
hidden_channels,
|
309 |
+
filter_channels,
|
310 |
+
n_heads,
|
311 |
+
n_layers,
|
312 |
+
kernel_size,
|
313 |
+
p_dropout,
|
314 |
+
gin_channels=self.gin_channels)
|
315 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
316 |
+
|
317 |
+
def forward(self, x, x_lengths, g=None):
|
318 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
319 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
320 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
321 |
+
|
322 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
323 |
+
stats = self.proj(x) * x_mask
|
324 |
+
|
325 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
326 |
+
return x, m, logs, x_mask
|
327 |
+
|
328 |
+
|
329 |
+
class ResidualCouplingTransformersLayer2(nn.Module): # vits2
|
330 |
+
def __init__(
|
331 |
+
self,
|
332 |
+
channels,
|
333 |
+
hidden_channels,
|
334 |
+
kernel_size,
|
335 |
+
dilation_rate,
|
336 |
+
n_layers,
|
337 |
+
p_dropout=0,
|
338 |
+
gin_channels=0,
|
339 |
+
mean_only=False,
|
340 |
+
):
|
341 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
342 |
+
super().__init__()
|
343 |
+
self.channels = channels
|
344 |
+
self.hidden_channels = hidden_channels
|
345 |
+
self.kernel_size = kernel_size
|
346 |
+
self.dilation_rate = dilation_rate
|
347 |
+
self.n_layers = n_layers
|
348 |
+
self.half_channels = channels // 2
|
349 |
+
self.mean_only = mean_only
|
350 |
+
|
351 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
352 |
+
self.pre_transformer = attentions.Encoder(
|
353 |
+
hidden_channels,
|
354 |
+
hidden_channels,
|
355 |
+
n_heads=2,
|
356 |
+
n_layers=1,
|
357 |
+
kernel_size=kernel_size,
|
358 |
+
p_dropout=p_dropout,
|
359 |
+
# window_size=None,
|
360 |
+
)
|
361 |
+
self.enc = modules.WN(
|
362 |
+
hidden_channels,
|
363 |
+
kernel_size,
|
364 |
+
dilation_rate,
|
365 |
+
n_layers,
|
366 |
+
p_dropout=p_dropout,
|
367 |
+
gin_channels=gin_channels,
|
368 |
+
)
|
369 |
+
|
370 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
371 |
+
self.post.weight.data.zero_()
|
372 |
+
self.post.bias.data.zero_()
|
373 |
+
|
374 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
375 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
376 |
+
h = self.pre(x0) * x_mask
|
377 |
+
h = h + self.pre_transformer(h * x_mask, x_mask) # vits2 residual connection
|
378 |
+
h = self.enc(h, x_mask, g=g)
|
379 |
+
stats = self.post(h) * x_mask
|
380 |
+
if not self.mean_only:
|
381 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
382 |
+
else:
|
383 |
+
m = stats
|
384 |
+
logs = torch.zeros_like(m)
|
385 |
+
if not reverse:
|
386 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
387 |
+
x = torch.cat([x0, x1], 1)
|
388 |
+
logdet = torch.sum(logs, [1, 2])
|
389 |
+
return x, logdet
|
390 |
+
else:
|
391 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
392 |
+
x = torch.cat([x0, x1], 1)
|
393 |
+
return x
|
394 |
+
|
395 |
+
|
396 |
+
class ResidualCouplingTransformersLayer(nn.Module): # vits2
|
397 |
+
def __init__(
|
398 |
+
self,
|
399 |
+
channels,
|
400 |
+
hidden_channels,
|
401 |
+
kernel_size,
|
402 |
+
dilation_rate,
|
403 |
+
n_layers,
|
404 |
+
p_dropout=0,
|
405 |
+
gin_channels=0,
|
406 |
+
mean_only=False,
|
407 |
+
):
|
408 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
409 |
+
super().__init__()
|
410 |
+
self.channels = channels
|
411 |
+
self.hidden_channels = hidden_channels
|
412 |
+
self.kernel_size = kernel_size
|
413 |
+
self.dilation_rate = dilation_rate
|
414 |
+
self.n_layers = n_layers
|
415 |
+
self.half_channels = channels // 2
|
416 |
+
self.mean_only = mean_only
|
417 |
+
# vits2
|
418 |
+
self.pre_transformer = attentions.Encoder(
|
419 |
+
self.half_channels,
|
420 |
+
self.half_channels,
|
421 |
+
n_heads=2,
|
422 |
+
n_layers=2,
|
423 |
+
kernel_size=3,
|
424 |
+
p_dropout=0.1,
|
425 |
+
window_size=None
|
426 |
+
)
|
427 |
+
|
428 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
429 |
+
self.enc = modules.WN(
|
430 |
+
hidden_channels,
|
431 |
+
kernel_size,
|
432 |
+
dilation_rate,
|
433 |
+
n_layers,
|
434 |
+
p_dropout=p_dropout,
|
435 |
+
gin_channels=gin_channels,
|
436 |
+
)
|
437 |
+
# vits2
|
438 |
+
self.post_transformer = attentions.Encoder(
|
439 |
+
self.hidden_channels,
|
440 |
+
self.hidden_channels,
|
441 |
+
n_heads=2,
|
442 |
+
n_layers=2,
|
443 |
+
kernel_size=3,
|
444 |
+
p_dropout=0.1,
|
445 |
+
window_size=None
|
446 |
+
)
|
447 |
+
|
448 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
449 |
+
self.post.weight.data.zero_()
|
450 |
+
self.post.bias.data.zero_()
|
451 |
+
|
452 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
453 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
454 |
+
x0_ = self.pre_transformer(x0 * x_mask, x_mask) # vits2
|
455 |
+
x0_ = x0_ + x0 # vits2 residual connection
|
456 |
+
h = self.pre(x0_) * x_mask # changed from x0 to x0_ to retain x0 for the flow
|
457 |
+
h = self.enc(h, x_mask, g=g)
|
458 |
+
|
459 |
+
# vits2 - (experimental;uncomment the following 2 line to use)
|
460 |
+
# h_ = self.post_transformer(h, x_mask)
|
461 |
+
# h = h + h_ #vits2 residual connection
|
462 |
+
|
463 |
+
stats = self.post(h) * x_mask
|
464 |
+
if not self.mean_only:
|
465 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
466 |
+
else:
|
467 |
+
m = stats
|
468 |
+
logs = torch.zeros_like(m)
|
469 |
+
if not reverse:
|
470 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
471 |
+
x = torch.cat([x0, x1], 1)
|
472 |
+
logdet = torch.sum(logs, [1, 2])
|
473 |
+
return x, logdet
|
474 |
+
else:
|
475 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
476 |
+
x = torch.cat([x0, x1], 1)
|
477 |
+
return x
|
478 |
+
|
479 |
+
def remove_weight_norm(self): # !
|
480 |
+
self.enc.remove_weight_norm()
|
481 |
+
|
482 |
+
|
483 |
+
class FFTransformerCouplingLayer(nn.Module): # vits2
|
484 |
+
def __init__(self,
|
485 |
+
channels,
|
486 |
+
hidden_channels,
|
487 |
+
kernel_size,
|
488 |
+
n_layers,
|
489 |
+
n_heads,
|
490 |
+
p_dropout=0,
|
491 |
+
filter_channels=768,
|
492 |
+
mean_only=False,
|
493 |
+
gin_channels=0
|
494 |
+
):
|
495 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
496 |
+
super().__init__()
|
497 |
+
self.channels = channels
|
498 |
+
self.hidden_channels = hidden_channels
|
499 |
+
self.kernel_size = kernel_size
|
500 |
+
self.n_layers = n_layers
|
501 |
+
self.half_channels = channels // 2
|
502 |
+
self.mean_only = mean_only
|
503 |
+
|
504 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
505 |
+
self.enc = attentions.FFT(
|
506 |
+
hidden_channels,
|
507 |
+
filter_channels,
|
508 |
+
n_heads,
|
509 |
+
n_layers,
|
510 |
+
kernel_size,
|
511 |
+
p_dropout,
|
512 |
+
isflow=True,
|
513 |
+
gin_channels=gin_channels
|
514 |
+
)
|
515 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
516 |
+
self.post.weight.data.zero_()
|
517 |
+
self.post.bias.data.zero_()
|
518 |
+
|
519 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
520 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
521 |
+
h = self.pre(x0) * x_mask
|
522 |
+
h_ = self.enc(h, x_mask, g=g)
|
523 |
+
h = h_ + h
|
524 |
+
stats = self.post(h) * x_mask
|
525 |
+
if not self.mean_only:
|
526 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
527 |
+
else:
|
528 |
+
m = stats
|
529 |
+
logs = torch.zeros_like(m)
|
530 |
+
|
531 |
+
if not reverse:
|
532 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
533 |
+
x = torch.cat([x0, x1], 1)
|
534 |
+
logdet = torch.sum(logs, [1, 2])
|
535 |
+
return x, logdet
|
536 |
+
else:
|
537 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
538 |
+
x = torch.cat([x0, x1], 1)
|
539 |
+
return x
|
540 |
+
|
541 |
+
|
542 |
+
class MonoTransformerFlowLayer(nn.Module): # vits2
|
543 |
+
def __init__(
|
544 |
+
self,
|
545 |
+
channels,
|
546 |
+
hidden_channels,
|
547 |
+
mean_only=False,
|
548 |
+
residual_connection=False,
|
549 |
+
# according to VITS-2 paper fig 1B set residual_connection=True
|
550 |
+
):
|
551 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
552 |
+
super().__init__()
|
553 |
+
self.channels = channels
|
554 |
+
self.hidden_channels = hidden_channels
|
555 |
+
self.half_channels = channels // 2
|
556 |
+
self.mean_only = mean_only
|
557 |
+
self.residual_connection = residual_connection
|
558 |
+
# vits2
|
559 |
+
self.pre_transformer = attentions.Encoder(
|
560 |
+
self.half_channels,
|
561 |
+
self.half_channels,
|
562 |
+
n_heads=2,
|
563 |
+
n_layers=2,
|
564 |
+
kernel_size=3,
|
565 |
+
p_dropout=0.1,
|
566 |
+
window_size=None
|
567 |
+
)
|
568 |
+
|
569 |
+
self.post = nn.Conv1d(self.half_channels, self.half_channels * (2 - mean_only), 1)
|
570 |
+
self.post.weight.data.zero_()
|
571 |
+
self.post.bias.data.zero_()
|
572 |
+
|
573 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
574 |
+
if self.residual_connection:
|
575 |
+
if not reverse:
|
576 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
577 |
+
x0_ = x0 * x_mask
|
578 |
+
x0_ = self.pre_transformer(x0, x_mask) # vits2
|
579 |
+
stats = self.post(x0_) * x_mask
|
580 |
+
if not self.mean_only:
|
581 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
582 |
+
else:
|
583 |
+
m = stats
|
584 |
+
logs = torch.zeros_like(m)
|
585 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
586 |
+
x_ = torch.cat([x0, x1], 1)
|
587 |
+
x = x + x_
|
588 |
+
logdet = torch.sum(torch.log(torch.exp(logs) + 1), [1, 2])
|
589 |
+
logdet = logdet + torch.log(torch.tensor(2)) * (x0.shape[1] * x0.shape[2])
|
590 |
+
return x, logdet
|
591 |
+
|
592 |
+
else:
|
593 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
594 |
+
x0 = x0 / 2
|
595 |
+
x0_ = x0 * x_mask
|
596 |
+
x0_ = self.pre_transformer(x0, x_mask) # vits2
|
597 |
+
stats = self.post(x0_) * x_mask
|
598 |
+
if not self.mean_only:
|
599 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
600 |
+
else:
|
601 |
+
m = stats
|
602 |
+
logs = torch.zeros_like(m)
|
603 |
+
x1_ = ((x1 - m) / (1 + torch.exp(-logs))) * x_mask
|
604 |
+
x = torch.cat([x0, x1_], 1)
|
605 |
+
return x
|
606 |
+
else:
|
607 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
608 |
+
x0_ = self.pre_transformer(x0 * x_mask, x_mask) # vits2
|
609 |
+
h = x0_ + x0 # vits2
|
610 |
+
stats = self.post(h) * x_mask
|
611 |
+
if not self.mean_only:
|
612 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
613 |
+
else:
|
614 |
+
m = stats
|
615 |
+
logs = torch.zeros_like(m)
|
616 |
+
if not reverse:
|
617 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
618 |
+
x = torch.cat([x0, x1], 1)
|
619 |
+
logdet = torch.sum(logs, [1, 2])
|
620 |
+
return x, logdet
|
621 |
+
else:
|
622 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
623 |
+
x = torch.cat([x0, x1], 1)
|
624 |
+
return x
|
625 |
+
|
626 |
+
|
627 |
+
class ResidualCouplingTransformersBlock(nn.Module): # vits2
|
628 |
+
def __init__(self,
|
629 |
+
channels,
|
630 |
+
hidden_channels,
|
631 |
+
kernel_size,
|
632 |
+
dilation_rate,
|
633 |
+
n_layers,
|
634 |
+
n_flows=4,
|
635 |
+
gin_channels=0,
|
636 |
+
use_transformer_flows=False,
|
637 |
+
transformer_flow_type="pre_conv",
|
638 |
+
):
|
639 |
+
super().__init__()
|
640 |
+
self.channels = channels
|
641 |
+
self.hidden_channels = hidden_channels
|
642 |
+
self.kernel_size = kernel_size
|
643 |
+
self.dilation_rate = dilation_rate
|
644 |
+
self.n_layers = n_layers
|
645 |
+
self.n_flows = n_flows
|
646 |
+
self.gin_channels = gin_channels
|
647 |
+
|
648 |
+
self.flows = nn.ModuleList()
|
649 |
+
# TODO : clean up this mess
|
650 |
+
if use_transformer_flows:
|
651 |
+
if transformer_flow_type == "pre_conv":
|
652 |
+
for i in range(n_flows):
|
653 |
+
self.flows.append(
|
654 |
+
ResidualCouplingTransformersLayer(
|
655 |
+
channels,
|
656 |
+
hidden_channels,
|
657 |
+
kernel_size,
|
658 |
+
dilation_rate,
|
659 |
+
n_layers,
|
660 |
+
gin_channels=gin_channels,
|
661 |
+
mean_only=True
|
662 |
+
)
|
663 |
+
)
|
664 |
+
self.flows.append(modules.Flip())
|
665 |
+
elif transformer_flow_type == "pre_conv2":
|
666 |
+
for i in range(n_flows):
|
667 |
+
self.flows.append(
|
668 |
+
ResidualCouplingTransformersLayer2(
|
669 |
+
channels,
|
670 |
+
hidden_channels,
|
671 |
+
kernel_size,
|
672 |
+
dilation_rate,
|
673 |
+
n_layers,
|
674 |
+
gin_channels=gin_channels,
|
675 |
+
mean_only=True,
|
676 |
+
)
|
677 |
+
)
|
678 |
+
self.flows.append(modules.Flip())
|
679 |
+
elif transformer_flow_type == "fft":
|
680 |
+
for i in range(n_flows):
|
681 |
+
self.flows.append(
|
682 |
+
FFTransformerCouplingLayer(
|
683 |
+
channels,
|
684 |
+
hidden_channels,
|
685 |
+
kernel_size,
|
686 |
+
dilation_rate,
|
687 |
+
n_layers,
|
688 |
+
gin_channels=gin_channels,
|
689 |
+
mean_only=True
|
690 |
+
)
|
691 |
+
)
|
692 |
+
self.flows.append(modules.Flip())
|
693 |
+
elif transformer_flow_type == "mono_layer_inter_residual":
|
694 |
+
for i in range(n_flows):
|
695 |
+
self.flows.append(
|
696 |
+
modules.ResidualCouplingLayer(
|
697 |
+
channels,
|
698 |
+
hidden_channels,
|
699 |
+
kernel_size,
|
700 |
+
dilation_rate,
|
701 |
+
n_layers,
|
702 |
+
gin_channels=gin_channels,
|
703 |
+
mean_only=True
|
704 |
+
)
|
705 |
+
)
|
706 |
+
self.flows.append(modules.Flip())
|
707 |
+
self.flows.append(
|
708 |
+
MonoTransformerFlowLayer(
|
709 |
+
channels, hidden_channels, mean_only=True
|
710 |
+
)
|
711 |
+
)
|
712 |
+
elif transformer_flow_type == "mono_layer_post_residual":
|
713 |
+
for i in range(n_flows):
|
714 |
+
self.flows.append(
|
715 |
+
modules.ResidualCouplingLayer(
|
716 |
+
channels,
|
717 |
+
hidden_channels,
|
718 |
+
kernel_size,
|
719 |
+
dilation_rate,
|
720 |
+
n_layers,
|
721 |
+
gin_channels=gin_channels,
|
722 |
+
mean_only=True,
|
723 |
+
)
|
724 |
+
)
|
725 |
+
self.flows.append(modules.Flip())
|
726 |
+
self.flows.append(
|
727 |
+
MonoTransformerFlowLayer(
|
728 |
+
channels, hidden_channels, mean_only=True,
|
729 |
+
residual_connection=True
|
730 |
+
)
|
731 |
+
)
|
732 |
+
else:
|
733 |
+
for i in range(n_flows):
|
734 |
+
self.flows.append(
|
735 |
+
modules.ResidualCouplingLayer(
|
736 |
+
channels,
|
737 |
+
hidden_channels,
|
738 |
+
kernel_size,
|
739 |
+
dilation_rate,
|
740 |
+
n_layers,
|
741 |
+
gin_channels=gin_channels,
|
742 |
+
mean_only=True
|
743 |
+
)
|
744 |
+
)
|
745 |
+
self.flows.append(modules.Flip())
|
746 |
+
|
747 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
748 |
+
if not reverse:
|
749 |
+
for flow in self.flows:
|
750 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
751 |
+
else:
|
752 |
+
for flow in reversed(self.flows):
|
753 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
754 |
+
return x
|
755 |
+
|
756 |
+
def remove_weight_norm(self): # !
|
757 |
+
for i, l in enumerate(self.flows):
|
758 |
+
if i % 2 == 0:
|
759 |
+
l.remove_weight_norm()
|
760 |
+
|
761 |
+
|
762 |
+
class ResidualCouplingBlock(nn.Module):
|
763 |
+
def __init__(self,
|
764 |
+
channels,
|
765 |
+
hidden_channels,
|
766 |
+
kernel_size,
|
767 |
+
dilation_rate,
|
768 |
+
n_layers,
|
769 |
+
n_flows=4,
|
770 |
+
gin_channels=0):
|
771 |
+
super().__init__()
|
772 |
+
self.channels = channels
|
773 |
+
self.hidden_channels = hidden_channels
|
774 |
+
self.kernel_size = kernel_size
|
775 |
+
self.dilation_rate = dilation_rate
|
776 |
+
self.n_layers = n_layers
|
777 |
+
self.n_flows = n_flows
|
778 |
+
self.gin_channels = gin_channels
|
779 |
+
|
780 |
+
self.flows = nn.ModuleList()
|
781 |
+
for i in range(n_flows):
|
782 |
+
self.flows.append(
|
783 |
+
modules.ResidualCouplingLayer(
|
784 |
+
channels,
|
785 |
+
hidden_channels,
|
786 |
+
kernel_size,
|
787 |
+
dilation_rate,
|
788 |
+
n_layers,
|
789 |
+
gin_channels=gin_channels,
|
790 |
+
mean_only=True
|
791 |
+
)
|
792 |
+
)
|
793 |
+
self.flows.append(modules.Flip())
|
794 |
+
|
795 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
796 |
+
if not reverse:
|
797 |
+
for flow in self.flows:
|
798 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
799 |
+
else:
|
800 |
+
for flow in reversed(self.flows):
|
801 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
802 |
+
return x
|
803 |
+
|
804 |
+
def remove_weight_norm(self): # !
|
805 |
+
for i, l in enumerate(self.flows):
|
806 |
+
if i % 2 == 0:
|
807 |
+
l.remove_weight_norm()
|
808 |
+
|
809 |
+
|
810 |
+
class PosteriorEncoder(nn.Module):
|
811 |
+
def __init__(self,
|
812 |
+
in_channels,
|
813 |
+
out_channels,
|
814 |
+
hidden_channels,
|
815 |
+
kernel_size,
|
816 |
+
dilation_rate,
|
817 |
+
n_layers,
|
818 |
+
gin_channels=0):
|
819 |
+
super().__init__()
|
820 |
+
self.in_channels = in_channels
|
821 |
+
self.out_channels = out_channels
|
822 |
+
self.hidden_channels = hidden_channels
|
823 |
+
self.kernel_size = kernel_size
|
824 |
+
self.dilation_rate = dilation_rate
|
825 |
+
self.n_layers = n_layers
|
826 |
+
self.gin_channels = gin_channels
|
827 |
+
|
828 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
829 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
830 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
831 |
+
|
832 |
+
def forward(self, x, x_lengths, g=None):
|
833 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
834 |
+
x = self.pre(x) * x_mask
|
835 |
+
x = self.enc(x, x_mask, g=g)
|
836 |
+
stats = self.proj(x) * x_mask
|
837 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
838 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
839 |
+
return z, m, logs, x_mask
|
840 |
+
|
841 |
+
|
842 |
+
class Generator(torch.nn.Module):
|
843 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
844 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
845 |
+
super(Generator, self).__init__()
|
846 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
847 |
+
self.num_upsamples = len(upsample_rates)
|
848 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
849 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
850 |
+
|
851 |
+
self.ups = nn.ModuleList()
|
852 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
853 |
+
self.ups.append(weight_norm(
|
854 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
855 |
+
k, u, padding=(k - u) // 2)))
|
856 |
+
|
857 |
+
self.resblocks = nn.ModuleList()
|
858 |
+
for i in range(len(self.ups)):
|
859 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
860 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
861 |
+
self.resblocks.append(resblock(ch, k, d))
|
862 |
+
|
863 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
864 |
+
self.ups.apply(init_weights)
|
865 |
+
|
866 |
+
if gin_channels != 0:
|
867 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
868 |
+
|
869 |
+
def forward(self, x, g=None):
|
870 |
+
x = self.conv_pre(x)
|
871 |
+
if g is not None:
|
872 |
+
x = x + self.cond(g)
|
873 |
+
|
874 |
+
for i in range(self.num_upsamples):
|
875 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
876 |
+
x = self.ups[i](x)
|
877 |
+
xs = None
|
878 |
+
for j in range(self.num_kernels):
|
879 |
+
if xs is None:
|
880 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
881 |
+
else:
|
882 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
883 |
+
x = xs / self.num_kernels
|
884 |
+
x = F.leaky_relu(x)
|
885 |
+
x = self.conv_post(x)
|
886 |
+
x = torch.tanh(x)
|
887 |
+
|
888 |
+
return x
|
889 |
+
|
890 |
+
def remove_weight_norm(self):
|
891 |
+
print('Removing weight norm...')
|
892 |
+
for l in self.ups:
|
893 |
+
remove_weight_norm(l)
|
894 |
+
for l in self.resblocks:
|
895 |
+
l.remove_weight_norm()
|
896 |
+
|
897 |
+
|
898 |
+
class iSTFT_Generator(torch.nn.Module):
|
899 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
900 |
+
upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size,
|
901 |
+
gin_channels=0, is_onnx=False):
|
902 |
+
super(iSTFT_Generator, self).__init__()
|
903 |
+
# self.h = h
|
904 |
+
self.gen_istft_n_fft = gen_istft_n_fft
|
905 |
+
self.gen_istft_hop_size = gen_istft_hop_size
|
906 |
+
|
907 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
908 |
+
self.num_upsamples = len(upsample_rates)
|
909 |
+
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
|
910 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
911 |
+
|
912 |
+
self.ups = nn.ModuleList()
|
913 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
914 |
+
self.ups.append(weight_norm(
|
915 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
916 |
+
k, u, padding=(k - u) // 2)))
|
917 |
+
|
918 |
+
self.resblocks = nn.ModuleList()
|
919 |
+
for i in range(len(self.ups)):
|
920 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
921 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
922 |
+
self.resblocks.append(resblock(ch, k, d))
|
923 |
+
|
924 |
+
self.post_n_fft = self.gen_istft_n_fft
|
925 |
+
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
926 |
+
self.ups.apply(init_weights)
|
927 |
+
self.conv_post.apply(init_weights)
|
928 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
929 |
+
'''
|
930 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
931 |
+
win_length=self.gen_istft_n_fft)
|
932 |
+
'''
|
933 |
+
# - for onnx
|
934 |
+
if is_onnx == True:
|
935 |
+
self.stft = OnnxSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
936 |
+
win_length=self.gen_istft_n_fft)
|
937 |
+
else:
|
938 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
939 |
+
win_length=self.gen_istft_n_fft)
|
940 |
+
|
941 |
+
def forward(self, x, g=None):
|
942 |
+
x = self.conv_pre(x)
|
943 |
+
for i in range(self.num_upsamples):
|
944 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
945 |
+
x = self.ups[i](x)
|
946 |
+
xs = None
|
947 |
+
for j in range(self.num_kernels):
|
948 |
+
if xs is None:
|
949 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
950 |
+
else:
|
951 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
952 |
+
x = xs / self.num_kernels
|
953 |
+
x = F.leaky_relu(x)
|
954 |
+
x = self.reflection_pad(x)
|
955 |
+
x = self.conv_post(x)
|
956 |
+
spec = torch.exp(x[:, :self.post_n_fft // 2 + 1, :])
|
957 |
+
phase = math.pi * torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
958 |
+
out = self.stft.inverse(spec, phase).to(x.device)
|
959 |
+
return out, None
|
960 |
+
|
961 |
+
def remove_weight_norm(self):
|
962 |
+
print('Removing weight norm...')
|
963 |
+
for l in self.ups:
|
964 |
+
remove_weight_norm(l)
|
965 |
+
for l in self.resblocks:
|
966 |
+
l.remove_weight_norm()
|
967 |
+
remove_weight_norm(self.conv_pre)
|
968 |
+
remove_weight_norm(self.conv_post)
|
969 |
+
|
970 |
+
|
971 |
+
class Multiband_iSTFT_Generator(torch.nn.Module): # !
|
972 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
973 |
+
upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands,
|
974 |
+
gin_channels=0, is_onnx=False):
|
975 |
+
super(Multiband_iSTFT_Generator, self).__init__()
|
976 |
+
# self.h = h
|
977 |
+
self.subbands = subbands
|
978 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
979 |
+
self.num_upsamples = len(upsample_rates)
|
980 |
+
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
|
981 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
982 |
+
|
983 |
+
self.ups = nn.ModuleList()
|
984 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
985 |
+
self.ups.append(weight_norm(
|
986 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
987 |
+
k, u, padding=(k - u) // 2)))
|
988 |
+
|
989 |
+
self.resblocks = nn.ModuleList()
|
990 |
+
for i in range(len(self.ups)):
|
991 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
992 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
993 |
+
self.resblocks.append(resblock(ch, k, d))
|
994 |
+
|
995 |
+
self.post_n_fft = gen_istft_n_fft
|
996 |
+
self.ups.apply(init_weights)
|
997 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
998 |
+
self.reshape_pixelshuffle = []
|
999 |
+
|
1000 |
+
self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands * (self.post_n_fft + 2), 7, 1, padding=3))
|
1001 |
+
|
1002 |
+
self.subband_conv_post.apply(init_weights)
|
1003 |
+
|
1004 |
+
self.gen_istft_n_fft = gen_istft_n_fft
|
1005 |
+
self.gen_istft_hop_size = gen_istft_hop_size
|
1006 |
+
|
1007 |
+
#- for onnx
|
1008 |
+
if is_onnx == True:
|
1009 |
+
self.stft = OnnxSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1010 |
+
else:
|
1011 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1012 |
+
|
1013 |
+
def forward(self, x, g=None):
|
1014 |
+
'''
|
1015 |
+
stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
1016 |
+
win_length=self.gen_istft_n_fft).to(x.device) # !
|
1017 |
+
'''
|
1018 |
+
stft = self.stft.to(x.device)
|
1019 |
+
pqmf = PQMF(x.device)
|
1020 |
+
|
1021 |
+
x = self.conv_pre(x) # [B, ch, length]
|
1022 |
+
|
1023 |
+
for i in range(self.num_upsamples):
|
1024 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1025 |
+
x = self.ups[i](x)
|
1026 |
+
|
1027 |
+
xs = None
|
1028 |
+
for j in range(self.num_kernels):
|
1029 |
+
if xs is None:
|
1030 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
1031 |
+
else:
|
1032 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
1033 |
+
x = xs / self.num_kernels
|
1034 |
+
|
1035 |
+
x = F.leaky_relu(x)
|
1036 |
+
x = self.reflection_pad(x)
|
1037 |
+
x = self.subband_conv_post(x)
|
1038 |
+
x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1] // self.subbands, x.shape[-1]))
|
1039 |
+
|
1040 |
+
spec = torch.exp(x[:, :, :self.post_n_fft // 2 + 1, :])
|
1041 |
+
phase = math.pi * torch.sin(x[:, :, self.post_n_fft // 2 + 1:, :])
|
1042 |
+
|
1043 |
+
y_mb_hat = stft.inverse(
|
1044 |
+
torch.reshape(spec, (spec.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])),
|
1045 |
+
torch.reshape(phase, (phase.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])))
|
1046 |
+
y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1]))
|
1047 |
+
y_mb_hat = y_mb_hat.squeeze(-2)
|
1048 |
+
|
1049 |
+
y_g_hat = pqmf.synthesis(y_mb_hat)
|
1050 |
+
|
1051 |
+
return y_g_hat, y_mb_hat
|
1052 |
+
|
1053 |
+
def remove_weight_norm(self):
|
1054 |
+
print('Removing weight norm...')
|
1055 |
+
for l in self.ups:
|
1056 |
+
remove_weight_norm(l)
|
1057 |
+
for l in self.resblocks:
|
1058 |
+
l.remove_weight_norm()
|
1059 |
+
|
1060 |
+
|
1061 |
+
class Multistream_iSTFT_Generator(torch.nn.Module):
|
1062 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
1063 |
+
upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, subbands,
|
1064 |
+
gin_channels=0, is_onnx=False):
|
1065 |
+
super(Multistream_iSTFT_Generator, self).__init__()
|
1066 |
+
# self.h = h
|
1067 |
+
self.subbands = subbands
|
1068 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
1069 |
+
self.num_upsamples = len(upsample_rates)
|
1070 |
+
self.conv_pre = weight_norm(Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3))
|
1071 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
1072 |
+
|
1073 |
+
self.ups = nn.ModuleList()
|
1074 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
1075 |
+
self.ups.append(weight_norm(
|
1076 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
1077 |
+
k, u, padding=(k - u) // 2)))
|
1078 |
+
|
1079 |
+
self.resblocks = nn.ModuleList()
|
1080 |
+
for i in range(len(self.ups)):
|
1081 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
1082 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
1083 |
+
self.resblocks.append(resblock(ch, k, d))
|
1084 |
+
|
1085 |
+
self.post_n_fft = gen_istft_n_fft
|
1086 |
+
self.ups.apply(init_weights)
|
1087 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
1088 |
+
self.reshape_pixelshuffle = []
|
1089 |
+
|
1090 |
+
self.subband_conv_post = weight_norm(Conv1d(ch, self.subbands * (self.post_n_fft + 2), 7, 1, padding=3))
|
1091 |
+
|
1092 |
+
self.subband_conv_post.apply(init_weights)
|
1093 |
+
|
1094 |
+
self.gen_istft_n_fft = gen_istft_n_fft
|
1095 |
+
self.gen_istft_hop_size = gen_istft_hop_size
|
1096 |
+
|
1097 |
+
updown_filter = torch.zeros((self.subbands, self.subbands, self.subbands)).float()
|
1098 |
+
for k in range(self.subbands):
|
1099 |
+
updown_filter[k, k, 0] = 1.0
|
1100 |
+
self.register_buffer("updown_filter", updown_filter)
|
1101 |
+
#self.multistream_conv_post = weight_norm(Conv1d(4, 1, kernel_size=63, bias=False, padding=get_padding(63, 1)))
|
1102 |
+
self.multistream_conv_post = weight_norm(Conv1d(self.subbands, 1, kernel_size=63, bias=False, padding=get_padding(63, 1))) # from MB-iSTFT-VITS-44100-Ja
|
1103 |
+
self.multistream_conv_post.apply(init_weights)
|
1104 |
+
|
1105 |
+
#- for onnx
|
1106 |
+
if is_onnx == True:
|
1107 |
+
self.stft = OnnxSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1108 |
+
else:
|
1109 |
+
self.stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft)
|
1110 |
+
|
1111 |
+
def forward(self, x, g=None):
|
1112 |
+
'''
|
1113 |
+
stft = TorchSTFT(filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size,
|
1114 |
+
win_length=self.gen_istft_n_fft).to(x.device) # !
|
1115 |
+
'''
|
1116 |
+
stft = self.stft.to(x.device)
|
1117 |
+
|
1118 |
+
# pqmf = PQMF(x.device)
|
1119 |
+
|
1120 |
+
x = self.conv_pre(x) # [B, ch, length]
|
1121 |
+
|
1122 |
+
for i in range(self.num_upsamples):
|
1123 |
+
|
1124 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1125 |
+
x = self.ups[i](x)
|
1126 |
+
|
1127 |
+
xs = None
|
1128 |
+
for j in range(self.num_kernels):
|
1129 |
+
if xs is None:
|
1130 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
1131 |
+
else:
|
1132 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
1133 |
+
x = xs / self.num_kernels
|
1134 |
+
|
1135 |
+
x = F.leaky_relu(x)
|
1136 |
+
x = self.reflection_pad(x)
|
1137 |
+
x = self.subband_conv_post(x)
|
1138 |
+
x = torch.reshape(x, (x.shape[0], self.subbands, x.shape[1] // self.subbands, x.shape[-1]))
|
1139 |
+
|
1140 |
+
spec = torch.exp(x[:, :, :self.post_n_fft // 2 + 1, :])
|
1141 |
+
phase = math.pi * torch.sin(x[:, :, self.post_n_fft // 2 + 1:, :])
|
1142 |
+
|
1143 |
+
y_mb_hat = stft.inverse(
|
1144 |
+
torch.reshape(spec, (spec.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])),
|
1145 |
+
torch.reshape(phase, (phase.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])))
|
1146 |
+
y_mb_hat = torch.reshape(y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1]))
|
1147 |
+
y_mb_hat = y_mb_hat.squeeze(-2)
|
1148 |
+
|
1149 |
+
#y_mb_hat = F.conv_transpose1d(y_mb_hat, self.updown_filter.cuda(x.device) * self.subbands, stride=self.subbands)
|
1150 |
+
y_mb_hat = F.conv_transpose1d(y_mb_hat, self.updown_filter.to(x.device) * self.subbands, stride=self.subbands)
|
1151 |
+
|
1152 |
+
y_g_hat = self.multistream_conv_post(y_mb_hat)
|
1153 |
+
|
1154 |
+
return y_g_hat, y_mb_hat
|
1155 |
+
|
1156 |
+
def remove_weight_norm(self):
|
1157 |
+
print('Removing weight norm...')
|
1158 |
+
for l in self.ups:
|
1159 |
+
remove_weight_norm(l)
|
1160 |
+
for l in self.resblocks:
|
1161 |
+
l.remove_weight_norm()
|
1162 |
+
|
1163 |
+
|
1164 |
+
class DiscriminatorP(torch.nn.Module):
|
1165 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1166 |
+
super(DiscriminatorP, self).__init__()
|
1167 |
+
self.period = period
|
1168 |
+
self.use_spectral_norm = use_spectral_norm
|
1169 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1170 |
+
self.convs = nn.ModuleList([
|
1171 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
1172 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
1173 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
1174 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
1175 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
1176 |
+
])
|
1177 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
1178 |
+
|
1179 |
+
def forward(self, x):
|
1180 |
+
fmap = []
|
1181 |
+
|
1182 |
+
# 1d to 2d
|
1183 |
+
b, c, t = x.shape
|
1184 |
+
if t % self.period != 0: # pad first
|
1185 |
+
n_pad = self.period - (t % self.period)
|
1186 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
1187 |
+
t = t + n_pad
|
1188 |
+
x = x.view(b, c, t // self.period, self.period)
|
1189 |
+
|
1190 |
+
for l in self.convs:
|
1191 |
+
x = l(x)
|
1192 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1193 |
+
fmap.append(x)
|
1194 |
+
x = self.conv_post(x)
|
1195 |
+
fmap.append(x)
|
1196 |
+
x = torch.flatten(x, 1, -1)
|
1197 |
+
|
1198 |
+
return x, fmap
|
1199 |
+
|
1200 |
+
|
1201 |
+
class DiscriminatorS(torch.nn.Module):
|
1202 |
+
def __init__(self, use_spectral_norm=False):
|
1203 |
+
super(DiscriminatorS, self).__init__()
|
1204 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1205 |
+
self.convs = nn.ModuleList([
|
1206 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
1207 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
1208 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
1209 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
1210 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
1211 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
1212 |
+
])
|
1213 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
1214 |
+
|
1215 |
+
def forward(self, x):
|
1216 |
+
fmap = []
|
1217 |
+
|
1218 |
+
for l in self.convs:
|
1219 |
+
x = l(x)
|
1220 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1221 |
+
fmap.append(x)
|
1222 |
+
x = self.conv_post(x)
|
1223 |
+
fmap.append(x)
|
1224 |
+
x = torch.flatten(x, 1, -1)
|
1225 |
+
|
1226 |
+
return x, fmap
|
1227 |
+
|
1228 |
+
|
1229 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
1230 |
+
def __init__(self, use_spectral_norm=False):
|
1231 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
1232 |
+
periods = [2, 3, 5, 7, 11]
|
1233 |
+
|
1234 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1235 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
1236 |
+
self.discriminators = nn.ModuleList(discs)
|
1237 |
+
|
1238 |
+
def forward(self, y, y_hat):
|
1239 |
+
y_d_rs = []
|
1240 |
+
y_d_gs = []
|
1241 |
+
fmap_rs = []
|
1242 |
+
fmap_gs = []
|
1243 |
+
for i, d in enumerate(self.discriminators):
|
1244 |
+
y_d_r, fmap_r = d(y)
|
1245 |
+
y_d_g, fmap_g = d(y_hat)
|
1246 |
+
y_d_rs.append(y_d_r)
|
1247 |
+
y_d_gs.append(y_d_g)
|
1248 |
+
fmap_rs.append(fmap_r)
|
1249 |
+
fmap_gs.append(fmap_g)
|
1250 |
+
|
1251 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1252 |
+
|
1253 |
+
|
1254 |
+
class SynthesizerTrn(nn.Module):
|
1255 |
+
"""
|
1256 |
+
Synthesizer for Training
|
1257 |
+
"""
|
1258 |
+
|
1259 |
+
def __init__(self,
|
1260 |
+
n_vocab,
|
1261 |
+
spec_channels,
|
1262 |
+
segment_size,
|
1263 |
+
inter_channels,
|
1264 |
+
hidden_channels,
|
1265 |
+
filter_channels,
|
1266 |
+
n_heads,
|
1267 |
+
n_layers,
|
1268 |
+
kernel_size,
|
1269 |
+
p_dropout,
|
1270 |
+
resblock,
|
1271 |
+
resblock_kernel_sizes,
|
1272 |
+
resblock_dilation_sizes,
|
1273 |
+
upsample_rates,
|
1274 |
+
upsample_initial_channel,
|
1275 |
+
upsample_kernel_sizes,
|
1276 |
+
gen_istft_n_fft,
|
1277 |
+
gen_istft_hop_size,
|
1278 |
+
n_speakers=0,
|
1279 |
+
gin_channels=0,
|
1280 |
+
use_sdp=True,
|
1281 |
+
ms_istft_vits=False,
|
1282 |
+
mb_istft_vits=False,
|
1283 |
+
subbands=False,
|
1284 |
+
istft_vits=False,
|
1285 |
+
is_onnx=False,
|
1286 |
+
**kwargs):
|
1287 |
+
|
1288 |
+
super().__init__()
|
1289 |
+
self.n_vocab = n_vocab
|
1290 |
+
self.spec_channels = spec_channels
|
1291 |
+
self.inter_channels = inter_channels
|
1292 |
+
self.hidden_channels = hidden_channels
|
1293 |
+
self.filter_channels = filter_channels
|
1294 |
+
self.n_heads = n_heads
|
1295 |
+
self.n_layers = n_layers
|
1296 |
+
self.kernel_size = kernel_size
|
1297 |
+
self.p_dropout = p_dropout
|
1298 |
+
self.resblock = resblock
|
1299 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
1300 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
1301 |
+
self.upsample_rates = upsample_rates
|
1302 |
+
self.upsample_initial_channel = upsample_initial_channel
|
1303 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
1304 |
+
self.segment_size = segment_size
|
1305 |
+
self.n_speakers = n_speakers
|
1306 |
+
self.gin_channels = gin_channels
|
1307 |
+
self.ms_istft_vits = ms_istft_vits
|
1308 |
+
self.mb_istft_vits = mb_istft_vits
|
1309 |
+
self.istft_vits = istft_vits
|
1310 |
+
self.use_spk_conditioned_encoder = kwargs.get("use_spk_conditioned_encoder", False)
|
1311 |
+
self.use_transformer_flows = kwargs.get("use_transformer_flows", False)
|
1312 |
+
self.transformer_flow_type = kwargs.get("transformer_flow_type", "mono_layer_post_residual")
|
1313 |
+
if self.use_transformer_flows:
|
1314 |
+
assert self.transformer_flow_type in AVAILABLE_FLOW_TYPES, f"transformer_flow_type must be one of {AVAILABLE_FLOW_TYPES}"
|
1315 |
+
self.use_sdp = use_sdp
|
1316 |
+
# self.use_duration_discriminator = kwargs.get("use_duration_discriminator", False)
|
1317 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
1318 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
1319 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
1320 |
+
|
1321 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
1322 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
1323 |
+
self.enc_gin_channels = gin_channels
|
1324 |
+
else:
|
1325 |
+
self.enc_gin_channels = 0
|
1326 |
+
self.enc_p = TextEncoder(n_vocab,
|
1327 |
+
inter_channels,
|
1328 |
+
hidden_channels,
|
1329 |
+
filter_channels,
|
1330 |
+
n_heads,
|
1331 |
+
n_layers,
|
1332 |
+
kernel_size,
|
1333 |
+
p_dropout,
|
1334 |
+
gin_channels=self.enc_gin_channels)
|
1335 |
+
|
1336 |
+
if mb_istft_vits == True:
|
1337 |
+
print('Multi-band iSTFT VITS2')
|
1338 |
+
self.dec = Multiband_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes,
|
1339 |
+
resblock_dilation_sizes,
|
1340 |
+
upsample_rates, upsample_initial_channel, upsample_kernel_sizes,
|
1341 |
+
gen_istft_n_fft, gen_istft_hop_size, subbands,
|
1342 |
+
gin_channels=gin_channels, is_onnx=is_onnx)
|
1343 |
+
elif ms_istft_vits == True:
|
1344 |
+
print('Multi-stream iSTFT VITS2')
|
1345 |
+
self.dec = Multistream_iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes,
|
1346 |
+
resblock_dilation_sizes,
|
1347 |
+
upsample_rates, upsample_initial_channel, upsample_kernel_sizes,
|
1348 |
+
gen_istft_n_fft, gen_istft_hop_size, subbands,
|
1349 |
+
gin_channels=gin_channels, is_onnx=is_onnx)
|
1350 |
+
elif istft_vits == True:
|
1351 |
+
print('iSTFT-VITS2')
|
1352 |
+
self.dec = iSTFT_Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes,
|
1353 |
+
upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gen_istft_n_fft,
|
1354 |
+
gen_istft_hop_size, gin_channels=gin_channels, is_onnx=is_onnx)
|
1355 |
+
else:
|
1356 |
+
print('No iSTFT arguments found in json file')
|
1357 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes,
|
1358 |
+
upsample_rates,
|
1359 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) # vits 2
|
1360 |
+
|
1361 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
1362 |
+
gin_channels=gin_channels)
|
1363 |
+
# self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
1364 |
+
self.flow = ResidualCouplingTransformersBlock(
|
1365 |
+
inter_channels,
|
1366 |
+
hidden_channels,
|
1367 |
+
5,
|
1368 |
+
1,
|
1369 |
+
4,
|
1370 |
+
gin_channels=gin_channels,
|
1371 |
+
use_transformer_flows=self.use_transformer_flows,
|
1372 |
+
transformer_flow_type=self.transformer_flow_type
|
1373 |
+
)
|
1374 |
+
|
1375 |
+
if use_sdp:
|
1376 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
1377 |
+
else:
|
1378 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
1379 |
+
|
1380 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
1381 |
+
|
1382 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
1383 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
1384 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
1385 |
+
|
1386 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g) # vits2?
|
1387 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
1388 |
+
z_p = self.flow(z, y_mask, g=g)
|
1389 |
+
|
1390 |
+
with torch.no_grad():
|
1391 |
+
# negative cross-entropy
|
1392 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
1393 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
1394 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
|
1395 |
+
s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
1396 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
1397 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
1398 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
1399 |
+
|
1400 |
+
if self.use_noise_scaled_mas:
|
1401 |
+
epsilon = torch.std(neg_cent) * torch.randn_like(neg_cent) * self.current_mas_noise_scale
|
1402 |
+
neg_cent = neg_cent + epsilon
|
1403 |
+
|
1404 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1405 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
1406 |
+
|
1407 |
+
w = attn.sum(2)
|
1408 |
+
if self.use_sdp:
|
1409 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
1410 |
+
l_length = l_length / torch.sum(x_mask)
|
1411 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=1.)
|
1412 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
1413 |
+
else:
|
1414 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
1415 |
+
logw = self.dp(x, x_mask, g=g)
|
1416 |
+
l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
|
1417 |
+
|
1418 |
+
# expand prior
|
1419 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
1420 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
1421 |
+
|
1422 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
1423 |
+
o, o_mb = self.dec(z_slice, g=g)
|
1424 |
+
return o, o_mb, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (x, logw, logw_)
|
1425 |
+
|
1426 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
1427 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
1428 |
+
|
1429 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g)
|
1430 |
+
if self.use_sdp:
|
1431 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
1432 |
+
else:
|
1433 |
+
logw = self.dp(x, x_mask, g=g)
|
1434 |
+
w = torch.exp(logw) * x_mask * length_scale
|
1435 |
+
w_ceil = torch.ceil(w)
|
1436 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
1437 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
1438 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1439 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
1440 |
+
|
1441 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
1442 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
|
1443 |
+
2) # [b, t', t], [b, t, d] -> [b, d, t']
|
1444 |
+
|
1445 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
1446 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
1447 |
+
|
1448 |
+
o, o_mb = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
1449 |
+
return o, o_mb, attn, y_mask, (z, z_p, m_p, logs_p)
|
1450 |
+
|
1451 |
+
|
1452 |
+
#'''
|
1453 |
+
## currently vits-2 is not capable of voice conversion
|
1454 |
+
# comment - choihkk : Assuming the use of the ResidualCouplingTransformersLayer2 module, it seems that voice conversion is possible
|
1455 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
1456 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
1457 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
1458 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
1459 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
1460 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
1461 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
1462 |
+
o_hat, o_hat_mb = self.dec(z_hat * y_mask, g=g_tgt)
|
1463 |
+
return o_hat, o_hat_mb, y_mask, (z, z_p, z_hat)
|
1464 |
+
#'''
|
modules.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
37 |
+
super().__init__()
|
38 |
+
self.in_channels = in_channels
|
39 |
+
self.hidden_channels = hidden_channels
|
40 |
+
self.out_channels = out_channels
|
41 |
+
self.kernel_size = kernel_size
|
42 |
+
self.n_layers = n_layers
|
43 |
+
self.p_dropout = p_dropout
|
44 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
45 |
+
|
46 |
+
self.conv_layers = nn.ModuleList()
|
47 |
+
self.norm_layers = nn.ModuleList()
|
48 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = nn.Sequential(
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers-1):
|
54 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DDSConv(nn.Module):
|
71 |
+
"""
|
72 |
+
Dialted and Depth-Separable Convolution
|
73 |
+
"""
|
74 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
75 |
+
super().__init__()
|
76 |
+
self.channels = channels
|
77 |
+
self.kernel_size = kernel_size
|
78 |
+
self.n_layers = n_layers
|
79 |
+
self.p_dropout = p_dropout
|
80 |
+
|
81 |
+
self.drop = nn.Dropout(p_dropout)
|
82 |
+
self.convs_sep = nn.ModuleList()
|
83 |
+
self.convs_1x1 = nn.ModuleList()
|
84 |
+
self.norms_1 = nn.ModuleList()
|
85 |
+
self.norms_2 = nn.ModuleList()
|
86 |
+
for i in range(n_layers):
|
87 |
+
dilation = kernel_size ** i
|
88 |
+
padding = (kernel_size * dilation - dilation) // 2
|
89 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
90 |
+
groups=channels, dilation=dilation, padding=padding
|
91 |
+
))
|
92 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
93 |
+
self.norms_1.append(LayerNorm(channels))
|
94 |
+
self.norms_2.append(LayerNorm(channels))
|
95 |
+
|
96 |
+
def forward(self, x, x_mask, g=None):
|
97 |
+
if g is not None:
|
98 |
+
x = x + g
|
99 |
+
for i in range(self.n_layers):
|
100 |
+
y = self.convs_sep[i](x * x_mask)
|
101 |
+
y = self.norms_1[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.convs_1x1[i](y)
|
104 |
+
y = self.norms_2[i](y)
|
105 |
+
y = F.gelu(y)
|
106 |
+
y = self.drop(y)
|
107 |
+
x = x + y
|
108 |
+
return x * x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class WN(torch.nn.Module):
|
112 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
113 |
+
super(WN, self).__init__()
|
114 |
+
assert(kernel_size % 2 == 1)
|
115 |
+
self.hidden_channels =hidden_channels
|
116 |
+
self.kernel_size = kernel_size,
|
117 |
+
self.dilation_rate = dilation_rate
|
118 |
+
self.n_layers = n_layers
|
119 |
+
self.gin_channels = gin_channels
|
120 |
+
self.p_dropout = p_dropout
|
121 |
+
|
122 |
+
self.in_layers = torch.nn.ModuleList()
|
123 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
124 |
+
self.drop = nn.Dropout(p_dropout)
|
125 |
+
|
126 |
+
if gin_channels != 0:
|
127 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
128 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
129 |
+
|
130 |
+
for i in range(n_layers):
|
131 |
+
dilation = dilation_rate ** i
|
132 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
133 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
134 |
+
dilation=dilation, padding=padding)
|
135 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
136 |
+
self.in_layers.append(in_layer)
|
137 |
+
|
138 |
+
# last one is not necessary
|
139 |
+
if i < n_layers - 1:
|
140 |
+
res_skip_channels = 2 * hidden_channels
|
141 |
+
else:
|
142 |
+
res_skip_channels = hidden_channels
|
143 |
+
|
144 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
145 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
146 |
+
self.res_skip_layers.append(res_skip_layer)
|
147 |
+
|
148 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
149 |
+
output = torch.zeros_like(x)
|
150 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
151 |
+
|
152 |
+
if g is not None:
|
153 |
+
g = self.cond_layer(g)
|
154 |
+
|
155 |
+
for i in range(self.n_layers):
|
156 |
+
x_in = self.in_layers[i](x)
|
157 |
+
if g is not None:
|
158 |
+
cond_offset = i * 2 * self.hidden_channels
|
159 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
160 |
+
else:
|
161 |
+
g_l = torch.zeros_like(x_in)
|
162 |
+
|
163 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
164 |
+
x_in,
|
165 |
+
g_l,
|
166 |
+
n_channels_tensor)
|
167 |
+
acts = self.drop(acts)
|
168 |
+
|
169 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
170 |
+
if i < self.n_layers - 1:
|
171 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
172 |
+
x = (x + res_acts) * x_mask
|
173 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
174 |
+
else:
|
175 |
+
output = output + res_skip_acts
|
176 |
+
return output * x_mask
|
177 |
+
|
178 |
+
def remove_weight_norm(self):
|
179 |
+
if self.gin_channels != 0:
|
180 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
181 |
+
for l in self.in_layers:
|
182 |
+
torch.nn.utils.remove_weight_norm(l)
|
183 |
+
for l in self.res_skip_layers:
|
184 |
+
torch.nn.utils.remove_weight_norm(l)
|
185 |
+
|
186 |
+
|
187 |
+
class ResBlock1(torch.nn.Module):
|
188 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
189 |
+
super(ResBlock1, self).__init__()
|
190 |
+
self.convs1 = nn.ModuleList([
|
191 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
192 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
193 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
194 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
195 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
196 |
+
padding=get_padding(kernel_size, dilation[2])))
|
197 |
+
])
|
198 |
+
self.convs1.apply(init_weights)
|
199 |
+
|
200 |
+
self.convs2 = nn.ModuleList([
|
201 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
202 |
+
padding=get_padding(kernel_size, 1))),
|
203 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
204 |
+
padding=get_padding(kernel_size, 1))),
|
205 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
206 |
+
padding=get_padding(kernel_size, 1)))
|
207 |
+
])
|
208 |
+
self.convs2.apply(init_weights)
|
209 |
+
|
210 |
+
def forward(self, x, x_mask=None):
|
211 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
213 |
+
if x_mask is not None:
|
214 |
+
xt = xt * x_mask
|
215 |
+
xt = c1(xt)
|
216 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
217 |
+
if x_mask is not None:
|
218 |
+
xt = xt * x_mask
|
219 |
+
xt = c2(xt)
|
220 |
+
x = xt + x
|
221 |
+
if x_mask is not None:
|
222 |
+
x = x * x_mask
|
223 |
+
return x
|
224 |
+
|
225 |
+
def remove_weight_norm(self):
|
226 |
+
for l in self.convs1:
|
227 |
+
remove_weight_norm(l)
|
228 |
+
for l in self.convs2:
|
229 |
+
remove_weight_norm(l)
|
230 |
+
|
231 |
+
|
232 |
+
class ResBlock2(torch.nn.Module):
|
233 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
234 |
+
super(ResBlock2, self).__init__()
|
235 |
+
self.convs = nn.ModuleList([
|
236 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
237 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
238 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
239 |
+
padding=get_padding(kernel_size, dilation[1])))
|
240 |
+
])
|
241 |
+
self.convs.apply(init_weights)
|
242 |
+
|
243 |
+
def forward(self, x, x_mask=None):
|
244 |
+
for c in self.convs:
|
245 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
246 |
+
if x_mask is not None:
|
247 |
+
xt = xt * x_mask
|
248 |
+
xt = c(xt)
|
249 |
+
x = xt + x
|
250 |
+
if x_mask is not None:
|
251 |
+
x = x * x_mask
|
252 |
+
return x
|
253 |
+
|
254 |
+
def remove_weight_norm(self):
|
255 |
+
for l in self.convs:
|
256 |
+
remove_weight_norm(l)
|
257 |
+
|
258 |
+
|
259 |
+
class Log(nn.Module):
|
260 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
261 |
+
if not reverse:
|
262 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
263 |
+
logdet = torch.sum(-y, [1, 2])
|
264 |
+
return y, logdet
|
265 |
+
else:
|
266 |
+
x = torch.exp(x) * x_mask
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class Flip(nn.Module):
|
271 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
272 |
+
x = torch.flip(x, [1])
|
273 |
+
if not reverse:
|
274 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
275 |
+
return x, logdet
|
276 |
+
else:
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
class ElementwiseAffine(nn.Module):
|
281 |
+
def __init__(self, channels):
|
282 |
+
super().__init__()
|
283 |
+
self.channels = channels
|
284 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
288 |
+
if not reverse:
|
289 |
+
y = self.m + torch.exp(self.logs) * x
|
290 |
+
y = y * x_mask
|
291 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
292 |
+
return y, logdet
|
293 |
+
else:
|
294 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class ResidualCouplingLayer(nn.Module):
|
299 |
+
def __init__(self,
|
300 |
+
channels,
|
301 |
+
hidden_channels,
|
302 |
+
kernel_size,
|
303 |
+
dilation_rate,
|
304 |
+
n_layers,
|
305 |
+
p_dropout=0,
|
306 |
+
gin_channels=0,
|
307 |
+
mean_only=False):
|
308 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
309 |
+
super().__init__()
|
310 |
+
self.channels = channels
|
311 |
+
self.hidden_channels = hidden_channels
|
312 |
+
self.kernel_size = kernel_size
|
313 |
+
self.dilation_rate = dilation_rate
|
314 |
+
self.n_layers = n_layers
|
315 |
+
self.half_channels = channels // 2
|
316 |
+
self.mean_only = mean_only
|
317 |
+
|
318 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
319 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
320 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
321 |
+
self.post.weight.data.zero_()
|
322 |
+
self.post.bias.data.zero_()
|
323 |
+
|
324 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
325 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
326 |
+
h = self.pre(x0) * x_mask
|
327 |
+
h = self.enc(h, x_mask, g=g)
|
328 |
+
stats = self.post(h) * x_mask
|
329 |
+
if not self.mean_only:
|
330 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
331 |
+
else:
|
332 |
+
m = stats
|
333 |
+
logs = torch.zeros_like(m)
|
334 |
+
|
335 |
+
if not reverse:
|
336 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
337 |
+
x = torch.cat([x0, x1], 1)
|
338 |
+
logdet = torch.sum(logs, [1,2])
|
339 |
+
return x, logdet
|
340 |
+
else:
|
341 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
342 |
+
x = torch.cat([x0, x1], 1)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class ConvFlow(nn.Module):
|
347 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.filter_channels = filter_channels
|
351 |
+
self.kernel_size = kernel_size
|
352 |
+
self.n_layers = n_layers
|
353 |
+
self.num_bins = num_bins
|
354 |
+
self.tail_bound = tail_bound
|
355 |
+
self.half_channels = in_channels // 2
|
356 |
+
|
357 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
358 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
359 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
360 |
+
self.proj.weight.data.zero_()
|
361 |
+
self.proj.bias.data.zero_()
|
362 |
+
|
363 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
364 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
365 |
+
h = self.pre(x0)
|
366 |
+
h = self.convs(h, x_mask, g=g)
|
367 |
+
h = self.proj(h) * x_mask
|
368 |
+
|
369 |
+
b, c, t = x0.shape
|
370 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
371 |
+
|
372 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
373 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
374 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
375 |
+
|
376 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
377 |
+
unnormalized_widths,
|
378 |
+
unnormalized_heights,
|
379 |
+
unnormalized_derivatives,
|
380 |
+
inverse=reverse,
|
381 |
+
tails='linear',
|
382 |
+
tail_bound=self.tail_bound
|
383 |
+
)
|
384 |
+
|
385 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
386 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
387 |
+
if not reverse:
|
388 |
+
return x, logdet
|
389 |
+
else:
|
390 |
+
return x
|
monotonic_align/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import zeros, int32, float32
|
2 |
+
from torch import from_numpy
|
3 |
+
|
4 |
+
from .core import maximum_path_jit
|
5 |
+
|
6 |
+
|
7 |
+
def maximum_path(neg_cent, mask):
|
8 |
+
""" numba optimized version.
|
9 |
+
neg_cent: [b, t_t, t_s]
|
10 |
+
mask: [b, t_t, t_s]
|
11 |
+
"""
|
12 |
+
device = neg_cent.device
|
13 |
+
dtype = neg_cent.dtype
|
14 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(float32)
|
15 |
+
path = zeros(neg_cent.shape, dtype=int32)
|
16 |
+
|
17 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
|
18 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
|
19 |
+
maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
|
20 |
+
return from_numpy(path).to(device=device, dtype=dtype)
|
21 |
+
|
monotonic_align/core.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numba
|
2 |
+
|
3 |
+
|
4 |
+
@numba.jit(numba.void(numba.int32[:, :, ::1], numba.float32[:, :, ::1], numba.int32[::1], numba.int32[::1]),
|
5 |
+
nopython=True, nogil=True)
|
6 |
+
def maximum_path_jit(paths, values, t_ys, t_xs):
|
7 |
+
b = paths.shape[0]
|
8 |
+
max_neg_val = -1e9
|
9 |
+
for i in range(int(b)):
|
10 |
+
path = paths[i]
|
11 |
+
value = values[i]
|
12 |
+
t_y = t_ys[i]
|
13 |
+
t_x = t_xs[i]
|
14 |
+
|
15 |
+
v_prev = v_cur = 0.0
|
16 |
+
index = t_x - 1
|
17 |
+
|
18 |
+
for y in range(t_y):
|
19 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
20 |
+
if x == y:
|
21 |
+
v_cur = max_neg_val
|
22 |
+
else:
|
23 |
+
v_cur = value[y - 1, x]
|
24 |
+
if x == 0:
|
25 |
+
if y == 0:
|
26 |
+
v_prev = 0.
|
27 |
+
else:
|
28 |
+
v_prev = max_neg_val
|
29 |
+
else:
|
30 |
+
v_prev = value[y - 1, x - 1]
|
31 |
+
value[y, x] += max(v_prev, v_cur)
|
32 |
+
|
33 |
+
for y in range(t_y - 1, -1, -1):
|
34 |
+
path[y, index] = 1
|
35 |
+
if index != 0 and (index == y or value[y - 1, index] < value[y - 1, index - 1]):
|
36 |
+
index = index - 1
|
pqmf.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
# Copyright 2020 Tomoki Hayashi
|
4 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
5 |
+
|
6 |
+
"""Pseudo QMF modules."""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from scipy.signal.windows import kaiser
|
13 |
+
|
14 |
+
|
15 |
+
def design_prototype_filter(taps=62, cutoff_ratio=0.15, beta=9.0):
|
16 |
+
"""Design prototype filter for PQMF.
|
17 |
+
This method is based on `A Kaiser window approach for the design of prototype
|
18 |
+
filters of cosine modulated filterbanks`_.
|
19 |
+
Args:
|
20 |
+
taps (int): The number of filter taps.
|
21 |
+
cutoff_ratio (float): Cut-off frequency ratio.
|
22 |
+
beta (float): Beta coefficient for kaiser window.
|
23 |
+
Returns:
|
24 |
+
ndarray: Impluse response of prototype filter (taps + 1,).
|
25 |
+
.. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`:
|
26 |
+
https://ieeexplore.ieee.org/abstract/document/681427
|
27 |
+
"""
|
28 |
+
# check the arguments are valid
|
29 |
+
assert taps % 2 == 0, "The number of taps mush be even number."
|
30 |
+
assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."
|
31 |
+
|
32 |
+
# make initial filter
|
33 |
+
omega_c = np.pi * cutoff_ratio
|
34 |
+
with np.errstate(invalid='ignore'):
|
35 |
+
h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) \
|
36 |
+
/ (np.pi * (np.arange(taps + 1) - 0.5 * taps))
|
37 |
+
h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form
|
38 |
+
|
39 |
+
# apply kaiser window
|
40 |
+
w = kaiser(taps + 1, beta)
|
41 |
+
h = h_i * w
|
42 |
+
|
43 |
+
return h
|
44 |
+
|
45 |
+
|
46 |
+
class PQMF(torch.nn.Module):
|
47 |
+
"""PQMF module.
|
48 |
+
This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_.
|
49 |
+
.. _`Near-perfect-reconstruction pseudo-QMF banks`:
|
50 |
+
https://ieeexplore.ieee.org/document/258122
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(self, device, subbands=4, taps=62, cutoff_ratio=0.15, beta=9.0):
|
54 |
+
"""Initilize PQMF module.
|
55 |
+
Args:
|
56 |
+
subbands (int): The number of subbands.
|
57 |
+
taps (int): The number of filter taps.
|
58 |
+
cutoff_ratio (float): Cut-off frequency ratio.
|
59 |
+
beta (float): Beta coefficient for kaiser window.
|
60 |
+
"""
|
61 |
+
super(PQMF, self).__init__()
|
62 |
+
|
63 |
+
# define filter coefficient
|
64 |
+
h_proto = design_prototype_filter(taps, cutoff_ratio, beta)
|
65 |
+
h_analysis = np.zeros((subbands, len(h_proto)))
|
66 |
+
h_synthesis = np.zeros((subbands, len(h_proto)))
|
67 |
+
for k in range(subbands):
|
68 |
+
h_analysis[k] = 2 * h_proto * np.cos(
|
69 |
+
(2 * k + 1) * (np.pi / (2 * subbands)) *
|
70 |
+
(np.arange(taps + 1) - ((taps - 1) / 2)) +
|
71 |
+
(-1) ** k * np.pi / 4)
|
72 |
+
h_synthesis[k] = 2 * h_proto * np.cos(
|
73 |
+
(2 * k + 1) * (np.pi / (2 * subbands)) *
|
74 |
+
(np.arange(taps + 1) - ((taps - 1) / 2)) -
|
75 |
+
(-1) ** k * np.pi / 4)
|
76 |
+
|
77 |
+
# convert to tensor
|
78 |
+
analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1)
|
79 |
+
synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0)
|
80 |
+
|
81 |
+
# register coefficients as beffer
|
82 |
+
self.register_buffer("analysis_filter", analysis_filter)
|
83 |
+
self.register_buffer("synthesis_filter", synthesis_filter)
|
84 |
+
|
85 |
+
# filter for downsampling & upsampling
|
86 |
+
updown_filter = torch.zeros((subbands, subbands, subbands)).float()
|
87 |
+
for k in range(subbands):
|
88 |
+
updown_filter[k, k, 0] = 1.0
|
89 |
+
self.register_buffer("updown_filter", updown_filter)
|
90 |
+
self.subbands = subbands
|
91 |
+
|
92 |
+
# keep padding info
|
93 |
+
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
|
94 |
+
|
95 |
+
def analysis(self, x):
|
96 |
+
"""Analysis with PQMF.
|
97 |
+
Args:
|
98 |
+
x (Tensor): Input tensor (B, 1, T).
|
99 |
+
Returns:
|
100 |
+
Tensor: Output tensor (B, subbands, T // subbands).
|
101 |
+
"""
|
102 |
+
x = F.conv1d(self.pad_fn(x), self.analysis_filter)
|
103 |
+
return F.conv1d(x, self.updown_filter, stride=self.subbands)
|
104 |
+
|
105 |
+
def synthesis(self, x):
|
106 |
+
"""Synthesis with PQMF.
|
107 |
+
Args:
|
108 |
+
x (Tensor): Input tensor (B, subbands, T // subbands).
|
109 |
+
Returns:
|
110 |
+
Tensor: Output tensor (B, 1, T).
|
111 |
+
"""
|
112 |
+
# NOTE(kan-bayashi): Power will be dreased so here multipy by # subbands.
|
113 |
+
# Not sure this is the correct way, it is better to check again.
|
114 |
+
# TODO(kan-bayashi): Understand the reconstruction procedure
|
115 |
+
x = F.conv_transpose1d(x, self.updown_filter * self.subbands, stride=self.subbands)
|
116 |
+
return F.conv1d(self.pad_fn(x), self.synthesis_filter)
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numba
|
2 |
+
librosa
|
3 |
+
matplotlib
|
4 |
+
numpy
|
5 |
+
phonemizer
|
6 |
+
scipy
|
7 |
+
tensorboard
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
torchaudio
|
11 |
+
Unidecode
|
12 |
+
pyopenjtalk
|
13 |
+
jamo
|
14 |
+
pypinyin
|
15 |
+
ko_pron
|
16 |
+
jieba
|
17 |
+
cn2an
|
18 |
+
gradio==3.50.2
|
19 |
+
monotonic_align
|
20 |
+
httpx==0.24.1
|
saved_model/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8ced49ea7591ac054d578e597386f26827dc35a757bae228123b5ed59d8d3bb
|
3 |
+
size 2275
|
saved_model/cover.png
ADDED
Git LFS Details
|
saved_model/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c2a297cbe07aa674bf524592799bd56b70735fb510496e8ccd739644c76f9ce
|
3 |
+
size 162174033
|
stft.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
BSD 3-Clause License
|
3 |
+
Copyright (c) 2017, Prem Seetharaman
|
4 |
+
All rights reserved.
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions are met:
|
7 |
+
* Redistributions of source code must retain the above copyright notice,
|
8 |
+
this list of conditions and the following disclaimer.
|
9 |
+
* Redistributions in binary form must reproduce the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer in the
|
11 |
+
documentation and/or other materials provided with the distribution.
|
12 |
+
* Neither the name of the copyright holder nor the names of its
|
13 |
+
contributors may be used to endorse or promote products derived from this
|
14 |
+
software without specific prior written permission.
|
15 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
16 |
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
17 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
18 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
19 |
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
20 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
21 |
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
22 |
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
23 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
24 |
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
25 |
+
"""
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import numpy as np
|
29 |
+
import torch.nn.functional as F
|
30 |
+
from torch.autograd import Variable
|
31 |
+
from scipy.signal import get_window
|
32 |
+
from librosa.util import pad_center, tiny
|
33 |
+
import librosa.util as librosa_util
|
34 |
+
|
35 |
+
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
|
36 |
+
n_fft=800, dtype=np.float32, norm=None):
|
37 |
+
"""
|
38 |
+
# from librosa 0.6
|
39 |
+
Compute the sum-square envelope of a window function at a given hop length.
|
40 |
+
This is used to estimate modulation effects induced by windowing
|
41 |
+
observations in short-time fourier transforms.
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
window : string, tuple, number, callable, or list-like
|
45 |
+
Window specification, as in `get_window`
|
46 |
+
n_frames : int > 0
|
47 |
+
The number of analysis frames
|
48 |
+
hop_length : int > 0
|
49 |
+
The number of samples to advance between frames
|
50 |
+
win_length : [optional]
|
51 |
+
The length of the window function. By default, this matches `n_fft`.
|
52 |
+
n_fft : int > 0
|
53 |
+
The length of each analysis frame.
|
54 |
+
dtype : np.dtype
|
55 |
+
The data type of the output
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
59 |
+
The sum-squared envelope of the window function
|
60 |
+
"""
|
61 |
+
if win_length is None:
|
62 |
+
win_length = n_fft
|
63 |
+
|
64 |
+
n = n_fft + hop_length * (n_frames - 1)
|
65 |
+
x = np.zeros(n, dtype=dtype)
|
66 |
+
|
67 |
+
# Compute the squared window at the desired length
|
68 |
+
win_sq = get_window(window, win_length, fftbins=True)
|
69 |
+
win_sq = librosa_util.normalize(win_sq, norm=norm)**2
|
70 |
+
win_sq = librosa_util.pad_center(win_sq, n_fft)
|
71 |
+
|
72 |
+
# Fill the envelope
|
73 |
+
for i in range(n_frames):
|
74 |
+
sample = i * hop_length
|
75 |
+
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
class STFT(torch.nn.Module):
|
80 |
+
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
81 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800,
|
82 |
+
window='hann'):
|
83 |
+
super(STFT, self).__init__()
|
84 |
+
self.filter_length = filter_length
|
85 |
+
self.hop_length = hop_length
|
86 |
+
self.win_length = win_length
|
87 |
+
self.window = window
|
88 |
+
self.forward_transform = None
|
89 |
+
scale = self.filter_length / self.hop_length
|
90 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
91 |
+
|
92 |
+
cutoff = int((self.filter_length / 2 + 1))
|
93 |
+
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
|
94 |
+
np.imag(fourier_basis[:cutoff, :])])
|
95 |
+
|
96 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
97 |
+
inverse_basis = torch.FloatTensor(
|
98 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
|
99 |
+
|
100 |
+
if window is not None:
|
101 |
+
assert(filter_length >= win_length)
|
102 |
+
# get window and zero center pad it to filter_length
|
103 |
+
fft_window = get_window(window, win_length, fftbins=True)
|
104 |
+
fft_window = pad_center(fft_window, filter_length)
|
105 |
+
fft_window = torch.from_numpy(fft_window).float()
|
106 |
+
|
107 |
+
# window the bases
|
108 |
+
forward_basis *= fft_window
|
109 |
+
inverse_basis *= fft_window
|
110 |
+
|
111 |
+
self.register_buffer('forward_basis', forward_basis.float())
|
112 |
+
self.register_buffer('inverse_basis', inverse_basis.float())
|
113 |
+
|
114 |
+
def transform(self, input_data):
|
115 |
+
num_batches = input_data.size(0)
|
116 |
+
num_samples = input_data.size(1)
|
117 |
+
|
118 |
+
self.num_samples = num_samples
|
119 |
+
|
120 |
+
# similar to librosa, reflect-pad the input
|
121 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
122 |
+
input_data = F.pad(
|
123 |
+
input_data.unsqueeze(1),
|
124 |
+
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
125 |
+
mode='reflect')
|
126 |
+
input_data = input_data.squeeze(1)
|
127 |
+
|
128 |
+
forward_transform = F.conv1d(
|
129 |
+
input_data,
|
130 |
+
Variable(self.forward_basis, requires_grad=False),
|
131 |
+
stride=self.hop_length,
|
132 |
+
padding=0)
|
133 |
+
|
134 |
+
cutoff = int((self.filter_length / 2) + 1)
|
135 |
+
real_part = forward_transform[:, :cutoff, :]
|
136 |
+
imag_part = forward_transform[:, cutoff:, :]
|
137 |
+
|
138 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
139 |
+
phase = torch.autograd.Variable(
|
140 |
+
torch.atan2(imag_part.data, real_part.data))
|
141 |
+
|
142 |
+
return magnitude, phase
|
143 |
+
|
144 |
+
def inverse(self, magnitude, phase):
|
145 |
+
recombine_magnitude_phase = torch.cat(
|
146 |
+
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
|
147 |
+
|
148 |
+
inverse_transform = F.conv_transpose1d(
|
149 |
+
recombine_magnitude_phase,
|
150 |
+
Variable(self.inverse_basis, requires_grad=False),
|
151 |
+
stride=self.hop_length,
|
152 |
+
padding=0)
|
153 |
+
|
154 |
+
if self.window is not None:
|
155 |
+
window_sum = window_sumsquare(
|
156 |
+
self.window, magnitude.size(-1), hop_length=self.hop_length,
|
157 |
+
win_length=self.win_length, n_fft=self.filter_length,
|
158 |
+
dtype=np.float32)
|
159 |
+
# remove modulation effects
|
160 |
+
approx_nonzero_indices = torch.from_numpy(
|
161 |
+
np.where(window_sum > tiny(window_sum))[0])
|
162 |
+
window_sum = torch.autograd.Variable(
|
163 |
+
torch.from_numpy(window_sum), requires_grad=False)
|
164 |
+
window_sum = window_sum.to(inverse_transform.device()) if magnitude.is_cuda else window_sum
|
165 |
+
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
|
166 |
+
|
167 |
+
# scale by hop ratio
|
168 |
+
inverse_transform *= float(self.filter_length) / self.hop_length
|
169 |
+
|
170 |
+
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
|
171 |
+
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
|
172 |
+
|
173 |
+
return inverse_transform
|
174 |
+
|
175 |
+
def forward(self, input_data):
|
176 |
+
self.magnitude, self.phase = self.transform(input_data)
|
177 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
178 |
+
return reconstruction
|
179 |
+
|
180 |
+
|
181 |
+
class OnnxSTFT(torch.nn.Module):
|
182 |
+
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
183 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800,
|
184 |
+
window='hann'):
|
185 |
+
super(OnnxSTFT, self).__init__()
|
186 |
+
self.filter_length = filter_length
|
187 |
+
self.hop_length = hop_length
|
188 |
+
self.win_length = win_length
|
189 |
+
self.window = window
|
190 |
+
self.forward_transform = None
|
191 |
+
scale = self.filter_length / self.hop_length
|
192 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
193 |
+
|
194 |
+
cutoff = int((self.filter_length / 2 + 1))
|
195 |
+
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
|
196 |
+
np.imag(fourier_basis[:cutoff, :])])
|
197 |
+
|
198 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
199 |
+
inverse_basis = torch.FloatTensor(
|
200 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
|
201 |
+
|
202 |
+
if window is not None:
|
203 |
+
assert(filter_length >= win_length)
|
204 |
+
# get window and zero center pad it to filter_length
|
205 |
+
fft_window = get_window(window, win_length, fftbins=True)
|
206 |
+
fft_window = pad_center(fft_window, filter_length)
|
207 |
+
fft_window = torch.from_numpy(fft_window).float()
|
208 |
+
|
209 |
+
# window the bases
|
210 |
+
forward_basis *= fft_window
|
211 |
+
inverse_basis *= fft_window
|
212 |
+
|
213 |
+
self.register_buffer('forward_basis', forward_basis.float())
|
214 |
+
self.register_buffer('inverse_basis', inverse_basis.float())
|
215 |
+
|
216 |
+
def transform(self, input_data):
|
217 |
+
num_batches = input_data.size(0)
|
218 |
+
num_samples = input_data.size(1)
|
219 |
+
|
220 |
+
self.num_samples = num_samples
|
221 |
+
|
222 |
+
# similar to librosa, reflect-pad the input
|
223 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
224 |
+
input_data = F.pad(
|
225 |
+
input_data.unsqueeze(1),
|
226 |
+
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
227 |
+
mode='reflect')
|
228 |
+
input_data = input_data.squeeze(1)
|
229 |
+
|
230 |
+
forward_transform = F.conv1d(
|
231 |
+
input_data,
|
232 |
+
Variable(self.forward_basis, requires_grad=False),
|
233 |
+
stride=self.hop_length,
|
234 |
+
padding=0)
|
235 |
+
|
236 |
+
cutoff = int((self.filter_length / 2) + 1)
|
237 |
+
real_part = forward_transform[:, :cutoff, :]
|
238 |
+
imag_part = forward_transform[:, cutoff:, :]
|
239 |
+
|
240 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
241 |
+
phase = torch.autograd.Variable(
|
242 |
+
torch.atan2(imag_part.data, real_part.data))
|
243 |
+
|
244 |
+
return magnitude, phase
|
245 |
+
|
246 |
+
def inverse(self, magnitude, phase):
|
247 |
+
recombine_magnitude_phase = torch.cat(
|
248 |
+
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
|
249 |
+
|
250 |
+
inverse_transform = F.conv_transpose1d(
|
251 |
+
recombine_magnitude_phase,
|
252 |
+
Variable(self.inverse_basis, requires_grad=False),
|
253 |
+
stride=self.hop_length,
|
254 |
+
padding=0)
|
255 |
+
|
256 |
+
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
|
257 |
+
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
|
258 |
+
|
259 |
+
return inverse_transform
|
260 |
+
|
261 |
+
def forward(self, input_data):
|
262 |
+
self.magnitude, self.phase = self.transform(input_data)
|
263 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
264 |
+
return reconstruction
|
265 |
+
|
266 |
+
|
267 |
+
class TorchSTFT(torch.nn.Module):
|
268 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
269 |
+
super().__init__()
|
270 |
+
self.filter_length = filter_length
|
271 |
+
self.hop_length = hop_length
|
272 |
+
self.win_length = win_length
|
273 |
+
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
274 |
+
|
275 |
+
def transform(self, input_data):
|
276 |
+
forward_transform = torch.stft(
|
277 |
+
input_data,
|
278 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window,
|
279 |
+
return_complex=True)
|
280 |
+
|
281 |
+
return torch.abs(forward_transform), torch.angle(forward_transform)
|
282 |
+
|
283 |
+
def inverse(self, magnitude, phase):
|
284 |
+
inverse_transform = torch.istft(
|
285 |
+
magnitude * torch.exp(phase * 1j),
|
286 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
287 |
+
|
288 |
+
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
289 |
+
|
290 |
+
def forward(self, input_data):
|
291 |
+
self.magnitude, self.phase = self.transform(input_data)
|
292 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
293 |
+
return reconstruction
|
294 |
+
|
295 |
+
|
stft_loss.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
# Copyright 2019 Tomoki Hayashi
|
4 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
5 |
+
|
6 |
+
"""STFT-based Loss modules."""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
def stft(x, fft_size, hop_size, win_length, window):
|
13 |
+
"""Perform STFT and convert to magnitude spectrogram.
|
14 |
+
Args:
|
15 |
+
x (Tensor): Input signal tensor (B, T).
|
16 |
+
fft_size (int): FFT size.
|
17 |
+
hop_size (int): Hop size.
|
18 |
+
win_length (int): Window length.
|
19 |
+
window (str): Window function type.
|
20 |
+
Returns:
|
21 |
+
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
22 |
+
"""
|
23 |
+
x_stft = torch.stft(x, fft_size, hop_size, win_length, window.to(x.device))
|
24 |
+
real = x_stft[..., 0]
|
25 |
+
imag = x_stft[..., 1]
|
26 |
+
|
27 |
+
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
28 |
+
return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1)
|
29 |
+
|
30 |
+
|
31 |
+
class SpectralConvergengeLoss(torch.nn.Module):
|
32 |
+
"""Spectral convergence loss module."""
|
33 |
+
|
34 |
+
def __init__(self):
|
35 |
+
"""Initilize spectral convergence loss module."""
|
36 |
+
super(SpectralConvergengeLoss, self).__init__()
|
37 |
+
|
38 |
+
def forward(self, x_mag, y_mag):
|
39 |
+
"""Calculate forward propagation.
|
40 |
+
Args:
|
41 |
+
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
42 |
+
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
43 |
+
Returns:
|
44 |
+
Tensor: Spectral convergence loss value.
|
45 |
+
"""
|
46 |
+
return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")
|
47 |
+
|
48 |
+
|
49 |
+
class LogSTFTMagnitudeLoss(torch.nn.Module):
|
50 |
+
"""Log STFT magnitude loss module."""
|
51 |
+
|
52 |
+
def __init__(self):
|
53 |
+
"""Initilize los STFT magnitude loss module."""
|
54 |
+
super(LogSTFTMagnitudeLoss, self).__init__()
|
55 |
+
|
56 |
+
def forward(self, x_mag, y_mag):
|
57 |
+
"""Calculate forward propagation.
|
58 |
+
Args:
|
59 |
+
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
60 |
+
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
61 |
+
Returns:
|
62 |
+
Tensor: Log STFT magnitude loss value.
|
63 |
+
"""
|
64 |
+
return F.l1_loss(torch.log(y_mag), torch.log(x_mag))
|
65 |
+
|
66 |
+
|
67 |
+
class STFTLoss(torch.nn.Module):
|
68 |
+
"""STFT loss module."""
|
69 |
+
|
70 |
+
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window"):
|
71 |
+
"""Initialize STFT loss module."""
|
72 |
+
super(STFTLoss, self).__init__()
|
73 |
+
self.fft_size = fft_size
|
74 |
+
self.shift_size = shift_size
|
75 |
+
self.win_length = win_length
|
76 |
+
self.window = getattr(torch, window)(win_length)
|
77 |
+
self.spectral_convergenge_loss = SpectralConvergengeLoss()
|
78 |
+
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
|
79 |
+
|
80 |
+
def forward(self, x, y):
|
81 |
+
"""Calculate forward propagation.
|
82 |
+
Args:
|
83 |
+
x (Tensor): Predicted signal (B, T).
|
84 |
+
y (Tensor): Groundtruth signal (B, T).
|
85 |
+
Returns:
|
86 |
+
Tensor: Spectral convergence loss value.
|
87 |
+
Tensor: Log STFT magnitude loss value.
|
88 |
+
"""
|
89 |
+
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window)
|
90 |
+
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window)
|
91 |
+
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
|
92 |
+
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
|
93 |
+
|
94 |
+
return sc_loss, mag_loss
|
95 |
+
|
96 |
+
|
97 |
+
class MultiResolutionSTFTLoss(torch.nn.Module):
|
98 |
+
"""Multi resolution STFT loss module."""
|
99 |
+
|
100 |
+
def __init__(self,
|
101 |
+
fft_sizes=[1024, 2048, 512],
|
102 |
+
hop_sizes=[120, 240, 50],
|
103 |
+
win_lengths=[600, 1200, 240],
|
104 |
+
window="hann_window"):
|
105 |
+
"""Initialize Multi resolution STFT loss module.
|
106 |
+
Args:
|
107 |
+
fft_sizes (list): List of FFT sizes.
|
108 |
+
hop_sizes (list): List of hop sizes.
|
109 |
+
win_lengths (list): List of window lengths.
|
110 |
+
window (str): Window function type.
|
111 |
+
"""
|
112 |
+
super(MultiResolutionSTFTLoss, self).__init__()
|
113 |
+
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
114 |
+
self.stft_losses = torch.nn.ModuleList()
|
115 |
+
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
116 |
+
self.stft_losses += [STFTLoss(fs, ss, wl, window)]
|
117 |
+
|
118 |
+
def forward(self, x, y):
|
119 |
+
"""Calculate forward propagation.
|
120 |
+
Args:
|
121 |
+
x (Tensor): Predicted signal (B, T).
|
122 |
+
y (Tensor): Groundtruth signal (B, T).
|
123 |
+
Returns:
|
124 |
+
Tensor: Multi resolution spectral convergence loss value.
|
125 |
+
Tensor: Multi resolution log STFT magnitude loss value.
|
126 |
+
"""
|
127 |
+
sc_loss = 0.0
|
128 |
+
mag_loss = 0.0
|
129 |
+
for f in self.stft_losses:
|
130 |
+
sc_l, mag_l = f(x, y)
|
131 |
+
sc_loss += sc_l
|
132 |
+
mag_loss += mag_l
|
133 |
+
sc_loss /= len(self.stft_losses)
|
134 |
+
mag_loss /= len(self.stft_losses)
|
135 |
+
|
136 |
+
return sc_loss, mag_loss
|
text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
text/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
from text.symbols import symbols
|
4 |
+
|
5 |
+
|
6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
+
|
10 |
+
|
11 |
+
def text_to_sequence(text, cleaner_names):
|
12 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
+
Args:
|
14 |
+
text: string to convert to a sequence
|
15 |
+
cleaner_names: names of the cleaner functions to run the text through
|
16 |
+
Returns:
|
17 |
+
List of integers corresponding to the symbols in the text
|
18 |
+
'''
|
19 |
+
sequence = []
|
20 |
+
|
21 |
+
clean_text = _clean_text(text, cleaner_names)
|
22 |
+
for symbol in clean_text:
|
23 |
+
if symbol not in _symbol_to_id.keys():
|
24 |
+
continue
|
25 |
+
symbol_id = _symbol_to_id[symbol]
|
26 |
+
sequence += [symbol_id]
|
27 |
+
return sequence
|
28 |
+
|
29 |
+
|
30 |
+
def cleaned_text_to_sequence(cleaned_text):
|
31 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
32 |
+
Args:
|
33 |
+
text: string to convert to a sequence
|
34 |
+
Returns:
|
35 |
+
List of integers corresponding to the symbols in the text
|
36 |
+
'''
|
37 |
+
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()]
|
38 |
+
return sequence
|
39 |
+
|
40 |
+
|
41 |
+
def sequence_to_text(sequence):
|
42 |
+
'''Converts a sequence of IDs back to a string'''
|
43 |
+
result = ''
|
44 |
+
for symbol_id in sequence:
|
45 |
+
s = _id_to_symbol[symbol_id]
|
46 |
+
result += s
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
def _clean_text(text, cleaner_names):
|
51 |
+
for name in cleaner_names:
|
52 |
+
cleaner = getattr(cleaners, name)
|
53 |
+
if not cleaner:
|
54 |
+
raise Exception('Unknown cleaner: %s' % name)
|
55 |
+
text = cleaner(text)
|
56 |
+
return text
|
text/cleaners.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from text.japanese import japanese_to_romaji_with_accent, japanese_to_ipa, japanese_to_ipa2, japanese_to_ipa3
|
3 |
+
|
4 |
+
|
5 |
+
def japanese_cleaners(text):
|
6 |
+
text = japanese_to_romaji_with_accent(text)
|
7 |
+
text = re.sub(r'([A-Za-z])$', r'\1.', text)
|
8 |
+
return text
|
9 |
+
|
10 |
+
|
11 |
+
def japanese_cleaners2(text):
|
12 |
+
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
text/japanese.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unidecode import unidecode
|
3 |
+
import pyopenjtalk
|
4 |
+
|
5 |
+
|
6 |
+
# Regular expression matching Japanese without punctuation marks:
|
7 |
+
_japanese_characters = re.compile(
|
8 |
+
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
9 |
+
|
10 |
+
# Regular expression matching non-Japanese characters or punctuation marks:
|
11 |
+
_japanese_marks = re.compile(
|
12 |
+
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
13 |
+
|
14 |
+
# List of (symbol, Japanese) pairs for marks:
|
15 |
+
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
16 |
+
('%', 'パーセント')
|
17 |
+
]]
|
18 |
+
|
19 |
+
# List of (romaji, ipa) pairs for marks:
|
20 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
21 |
+
('ts', 'ʦ'),
|
22 |
+
('u', 'ɯ'),
|
23 |
+
('j', 'ʥ'),
|
24 |
+
('y', 'j'),
|
25 |
+
('ni', 'n^i'),
|
26 |
+
('nj', 'n^'),
|
27 |
+
('hi', 'çi'),
|
28 |
+
('hj', 'ç'),
|
29 |
+
('f', 'ɸ'),
|
30 |
+
('I', 'i*'),
|
31 |
+
('U', 'ɯ*'),
|
32 |
+
('r', 'ɾ')
|
33 |
+
]]
|
34 |
+
|
35 |
+
# List of (romaji, ipa2) pairs for marks:
|
36 |
+
_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
37 |
+
('u', 'ɯ'),
|
38 |
+
('ʧ', 'tʃ'),
|
39 |
+
('j', 'dʑ'),
|
40 |
+
('y', 'j'),
|
41 |
+
('ni', 'n^i'),
|
42 |
+
('nj', 'n^'),
|
43 |
+
('hi', 'çi'),
|
44 |
+
('hj', 'ç'),
|
45 |
+
('f', 'ɸ'),
|
46 |
+
('I', 'i*'),
|
47 |
+
('U', 'ɯ*'),
|
48 |
+
('r', 'ɾ')
|
49 |
+
]]
|
50 |
+
|
51 |
+
# List of (consonant, sokuon) pairs:
|
52 |
+
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
53 |
+
(r'Q([↑↓]*[kg])', r'k#\1'),
|
54 |
+
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
|
55 |
+
(r'Q([↑↓]*[sʃ])', r's\1'),
|
56 |
+
(r'Q([↑↓]*[pb])', r'p#\1')
|
57 |
+
]]
|
58 |
+
|
59 |
+
# List of (consonant, hatsuon) pairs:
|
60 |
+
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
61 |
+
(r'N([↑↓]*[pbm])', r'm\1'),
|
62 |
+
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
|
63 |
+
(r'N([↑↓]*[tdn])', r'n\1'),
|
64 |
+
(r'N([↑↓]*[kg])', r'ŋ\1')
|
65 |
+
]]
|
66 |
+
|
67 |
+
|
68 |
+
def symbols_to_japanese(text):
|
69 |
+
for regex, replacement in _symbols_to_japanese:
|
70 |
+
text = re.sub(regex, replacement, text)
|
71 |
+
return text
|
72 |
+
|
73 |
+
|
74 |
+
def japanese_to_romaji_with_accent(text):
|
75 |
+
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
76 |
+
text = symbols_to_japanese(text)
|
77 |
+
sentences = re.split(_japanese_marks, text)
|
78 |
+
marks = re.findall(_japanese_marks, text)
|
79 |
+
text = ''
|
80 |
+
for i, sentence in enumerate(sentences):
|
81 |
+
if re.match(_japanese_characters, sentence):
|
82 |
+
if text != '':
|
83 |
+
text += ' '
|
84 |
+
labels = pyopenjtalk.extract_fullcontext(sentence)
|
85 |
+
for n, label in enumerate(labels):
|
86 |
+
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
87 |
+
if phoneme not in ['sil', 'pau']:
|
88 |
+
text += phoneme.replace('ch', 'ʧ').replace('sh',
|
89 |
+
'ʃ').replace('cl', 'Q')
|
90 |
+
else:
|
91 |
+
continue
|
92 |
+
# n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
93 |
+
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
94 |
+
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
95 |
+
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
96 |
+
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
97 |
+
a2_next = -1
|
98 |
+
else:
|
99 |
+
a2_next = int(
|
100 |
+
re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
101 |
+
# Accent phrase boundary
|
102 |
+
if a3 == 1 and a2_next == 1:
|
103 |
+
text += ' '
|
104 |
+
# Falling
|
105 |
+
elif a1 == 0 and a2_next == a2 + 1:
|
106 |
+
text += '↓'
|
107 |
+
# Rising
|
108 |
+
elif a2 == 1 and a2_next == 2:
|
109 |
+
text += '↑'
|
110 |
+
if i < len(marks):
|
111 |
+
text += unidecode(marks[i]).replace(' ', '')
|
112 |
+
return text
|
113 |
+
|
114 |
+
|
115 |
+
def get_real_sokuon(text):
|
116 |
+
for regex, replacement in _real_sokuon:
|
117 |
+
text = re.sub(regex, replacement, text)
|
118 |
+
return text
|
119 |
+
|
120 |
+
|
121 |
+
def get_real_hatsuon(text):
|
122 |
+
for regex, replacement in _real_hatsuon:
|
123 |
+
text = re.sub(regex, replacement, text)
|
124 |
+
return text
|
125 |
+
|
126 |
+
|
127 |
+
def japanese_to_ipa(text):
|
128 |
+
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
129 |
+
text = re.sub(
|
130 |
+
r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
131 |
+
text = get_real_sokuon(text)
|
132 |
+
text = get_real_hatsuon(text)
|
133 |
+
for regex, replacement in _romaji_to_ipa:
|
134 |
+
text = re.sub(regex, replacement, text)
|
135 |
+
return text
|
136 |
+
|
137 |
+
|
138 |
+
def japanese_to_ipa2(text):
|
139 |
+
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
140 |
+
text = get_real_sokuon(text)
|
141 |
+
text = get_real_hatsuon(text)
|
142 |
+
for regex, replacement in _romaji_to_ipa2:
|
143 |
+
text = re.sub(regex, replacement, text)
|
144 |
+
return text
|
145 |
+
|
146 |
+
|
147 |
+
def japanese_to_ipa3(text):
|
148 |
+
text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
|
149 |
+
'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
|
150 |
+
text = re.sub(
|
151 |
+
r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
152 |
+
text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text)
|
153 |
+
return text
|
text/symbols.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Defines the set of symbols used in text input to the model.
|
3 |
+
'''
|
4 |
+
|
5 |
+
'''# japanese_cleaners
|
6 |
+
_pad = '_'
|
7 |
+
_punctuation = ',.!?-'
|
8 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧ↓↑ '
|
9 |
+
'''
|
10 |
+
|
11 |
+
# japanese_cleaners2
|
12 |
+
_pad = '_'
|
13 |
+
_punctuation = ',.!?-~…'
|
14 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧʦ↓↑ '
|
15 |
+
|
16 |
+
|
17 |
+
'''
|
18 |
+
# korean_cleaners
|
19 |
+
_pad = '_'
|
20 |
+
_punctuation = ',.!?…~'
|
21 |
+
_letters = 'ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ '
|
22 |
+
'''
|
23 |
+
|
24 |
+
'''# chinese_cleaners
|
25 |
+
_pad = '_'
|
26 |
+
_punctuation = ',。!?—…'
|
27 |
+
_letters = 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄜㄝㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩˉˊˇˋ˙ '
|
28 |
+
'''
|
29 |
+
|
30 |
+
'''# zh_ja_mixture_cleaners
|
31 |
+
_pad = '_'
|
32 |
+
_punctuation = ',.!?-~…'
|
33 |
+
_letters = 'AEINOQUabdefghijklmnoprstuvwyzʃʧʦɯɹəɥ⁼ʰ`→↓↑ '
|
34 |
+
'''
|
35 |
+
|
36 |
+
'''# sanskrit_cleaners
|
37 |
+
_pad = '_'
|
38 |
+
_punctuation = '।'
|
39 |
+
_letters = 'ँंःअआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलळवशषसहऽािीुूृॄेैोौ्ॠॢ '
|
40 |
+
'''
|
41 |
+
|
42 |
+
'''# cjks_cleaners
|
43 |
+
_pad = '_'
|
44 |
+
_punctuation = ',.!?-~…'
|
45 |
+
_letters = 'NQabdefghijklmnopstuvwxyzʃʧʥʦɯɹəɥçɸɾβŋɦː⁼ʰ`^#*=→↓↑ '
|
46 |
+
'''
|
47 |
+
|
48 |
+
'''# thai_cleaners
|
49 |
+
_pad = '_'
|
50 |
+
_punctuation = '.!? '
|
51 |
+
_letters = 'กขฃคฆงจฉชซฌญฎฏฐฑฒณดตถทธนบปผฝพฟภมยรฤลวศษสหฬอฮฯะัาำิีึืุูเแโใไๅๆ็่้๊๋์'
|
52 |
+
'''
|
53 |
+
|
54 |
+
'''# cjke_cleaners2
|
55 |
+
_pad = '_'
|
56 |
+
_punctuation = ',.!?-~…'
|
57 |
+
_letters = 'NQabdefghijklmnopstuvwxyzɑæʃʑçɯɪɔɛɹðəɫɥɸʊɾʒθβŋɦ⁼ʰ`^#*=ˈˌ→↓↑ '
|
58 |
+
'''
|
59 |
+
|
60 |
+
'''# shanghainese_cleaners
|
61 |
+
_pad = '_'
|
62 |
+
_punctuation = ',.!?…'
|
63 |
+
_letters = 'abdfghiklmnopstuvyzøŋȵɑɔɕəɤɦɪɿʑʔʰ̩̃ᴀᴇ15678 '
|
64 |
+
'''
|
65 |
+
|
66 |
+
'''# chinese_dialect_cleaners
|
67 |
+
_pad = '_'
|
68 |
+
_punctuation = ',.!?~…─'
|
69 |
+
_letters = '#Nabdefghijklmnoprstuvwxyzæçøŋœȵɐɑɒɓɔɕɗɘəɚɛɜɣɤɦɪɭɯɵɷɸɻɾɿʂʅʊʋʌʏʑʔʦʮʰʷˀː˥˦˧˨˩̥̩̃̚αᴀᴇ↑↓∅ⱼ '
|
70 |
+
'''
|
71 |
+
|
72 |
+
# Export all symbols:
|
73 |
+
symbols = [_pad] + list(_punctuation) + list(_letters)
|
74 |
+
|
75 |
+
# Special symbol ids
|
76 |
+
SPACE_ID = symbols.index(" ")
|
transforms.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
+
unnormalized_derivatives[..., 0] = constant
|
75 |
+
unnormalized_derivatives[..., -1] = constant
|
76 |
+
|
77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
+
logabsdet[outside_interval_mask] = 0
|
79 |
+
else:
|
80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
+
|
82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
+
min_bin_width=min_bin_width,
|
90 |
+
min_bin_height=min_bin_height,
|
91 |
+
min_derivative=min_derivative
|
92 |
+
)
|
93 |
+
|
94 |
+
return outputs, logabsdet
|
95 |
+
|
96 |
+
def rational_quadratic_spline(inputs,
|
97 |
+
unnormalized_widths,
|
98 |
+
unnormalized_heights,
|
99 |
+
unnormalized_derivatives,
|
100 |
+
inverse=False,
|
101 |
+
left=0., right=1., bottom=0., top=1.,
|
102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
+
raise ValueError('Input to a transform is not within its domain')
|
107 |
+
|
108 |
+
num_bins = unnormalized_widths.shape[-1]
|
109 |
+
|
110 |
+
if min_bin_width * num_bins > 1.0:
|
111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
+
if min_bin_height * num_bins > 1.0:
|
113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
+
|
115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
+
cumwidths = (right - left) * cumwidths + left
|
120 |
+
cumwidths[..., 0] = left
|
121 |
+
cumwidths[..., -1] = right
|
122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
+
|
124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
+
|
126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
131 |
+
cumheights[..., 0] = bottom
|
132 |
+
cumheights[..., -1] = top
|
133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
+
|
135 |
+
if inverse:
|
136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
+
else:
|
138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
+
|
140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
+
|
143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
+
delta = heights / widths
|
145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
+
|
147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
if inverse:
|
153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
+
+ input_derivatives_plus_one
|
155 |
+
- 2 * input_delta)
|
156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
157 |
+
b = (input_heights * input_derivatives
|
158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
159 |
+
+ input_derivatives_plus_one
|
160 |
+
- 2 * input_delta))
|
161 |
+
c = - input_delta * (inputs - input_cumheights)
|
162 |
+
|
163 |
+
discriminant = b.pow(2) - 4 * a * c
|
164 |
+
assert (discriminant >= 0).all()
|
165 |
+
|
166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
168 |
+
|
169 |
+
theta_one_minus_theta = root * (1 - root)
|
170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
+
* theta_one_minus_theta)
|
172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
174 |
+
+ input_derivatives * (1 - root).pow(2))
|
175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
+
|
177 |
+
return outputs, -logabsdet
|
178 |
+
else:
|
179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
181 |
+
|
182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
+
+ input_derivatives * theta_one_minus_theta)
|
184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
+
* theta_one_minus_theta)
|
186 |
+
outputs = input_cumheights + numerator / denominator
|
187 |
+
|
188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
+
|
193 |
+
return outputs, logabsdet
|
utils.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import sys
|
4 |
+
import argparse
|
5 |
+
import logging
|
6 |
+
import json
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
from scipy.io.wavfile import read
|
10 |
+
import torch
|
11 |
+
|
12 |
+
MATPLOTLIB_FLAG = False
|
13 |
+
|
14 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
15 |
+
logger = logging
|
16 |
+
|
17 |
+
|
18 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
19 |
+
assert os.path.isfile(checkpoint_path)
|
20 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
21 |
+
iteration = checkpoint_dict['iteration']
|
22 |
+
learning_rate = checkpoint_dict['learning_rate']
|
23 |
+
if optimizer is not None:
|
24 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
25 |
+
saved_state_dict = checkpoint_dict['model']
|
26 |
+
if hasattr(model, 'module'):
|
27 |
+
state_dict = model.module.state_dict()
|
28 |
+
else:
|
29 |
+
state_dict = model.state_dict()
|
30 |
+
new_state_dict= {}
|
31 |
+
for k, v in state_dict.items():
|
32 |
+
try:
|
33 |
+
new_state_dict[k] = saved_state_dict[k]
|
34 |
+
except:
|
35 |
+
logger.info("%s is not in the checkpoint" % k)
|
36 |
+
new_state_dict[k] = v
|
37 |
+
if hasattr(model, 'module'):
|
38 |
+
model.module.load_state_dict(new_state_dict)
|
39 |
+
else:
|
40 |
+
model.load_state_dict(new_state_dict)
|
41 |
+
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
42 |
+
checkpoint_path, iteration))
|
43 |
+
return model, optimizer, learning_rate, iteration
|
44 |
+
|
45 |
+
|
46 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
47 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
48 |
+
iteration, checkpoint_path))
|
49 |
+
if hasattr(model, 'module'):
|
50 |
+
state_dict = model.module.state_dict()
|
51 |
+
else:
|
52 |
+
state_dict = model.state_dict()
|
53 |
+
torch.save({'model': state_dict,
|
54 |
+
'iteration': iteration,
|
55 |
+
'optimizer': optimizer.state_dict(),
|
56 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
57 |
+
|
58 |
+
|
59 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
60 |
+
for k, v in scalars.items():
|
61 |
+
writer.add_scalar(k, v, global_step)
|
62 |
+
for k, v in histograms.items():
|
63 |
+
writer.add_histogram(k, v, global_step)
|
64 |
+
for k, v in images.items():
|
65 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
66 |
+
for k, v in audios.items():
|
67 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
68 |
+
|
69 |
+
|
70 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
71 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
72 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
73 |
+
x = f_list[-1]
|
74 |
+
print(x)
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
79 |
+
global MATPLOTLIB_FLAG
|
80 |
+
if not MATPLOTLIB_FLAG:
|
81 |
+
import matplotlib
|
82 |
+
matplotlib.use("Agg")
|
83 |
+
MATPLOTLIB_FLAG = True
|
84 |
+
mpl_logger = logging.getLogger('matplotlib')
|
85 |
+
mpl_logger.setLevel(logging.WARNING)
|
86 |
+
import matplotlib.pylab as plt
|
87 |
+
import numpy as np
|
88 |
+
|
89 |
+
fig, ax = plt.subplots(figsize=(10,2))
|
90 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
91 |
+
interpolation='none')
|
92 |
+
plt.colorbar(im, ax=ax)
|
93 |
+
plt.xlabel("Frames")
|
94 |
+
plt.ylabel("Channels")
|
95 |
+
plt.tight_layout()
|
96 |
+
|
97 |
+
fig.canvas.draw()
|
98 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
99 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
100 |
+
plt.close()
|
101 |
+
return data
|
102 |
+
|
103 |
+
|
104 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
105 |
+
global MATPLOTLIB_FLAG
|
106 |
+
if not MATPLOTLIB_FLAG:
|
107 |
+
import matplotlib
|
108 |
+
matplotlib.use("Agg")
|
109 |
+
MATPLOTLIB_FLAG = True
|
110 |
+
mpl_logger = logging.getLogger('matplotlib')
|
111 |
+
mpl_logger.setLevel(logging.WARNING)
|
112 |
+
import matplotlib.pylab as plt
|
113 |
+
import numpy as np
|
114 |
+
|
115 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
116 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
117 |
+
interpolation='none')
|
118 |
+
fig.colorbar(im, ax=ax)
|
119 |
+
xlabel = 'Decoder timestep'
|
120 |
+
if info is not None:
|
121 |
+
xlabel += '\n\n' + info
|
122 |
+
plt.xlabel(xlabel)
|
123 |
+
plt.ylabel('Encoder timestep')
|
124 |
+
plt.tight_layout()
|
125 |
+
|
126 |
+
fig.canvas.draw()
|
127 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
128 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
129 |
+
plt.close()
|
130 |
+
return data
|
131 |
+
|
132 |
+
|
133 |
+
def load_wav_to_torch(full_path):
|
134 |
+
sampling_rate, data = read(full_path)
|
135 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
136 |
+
|
137 |
+
|
138 |
+
def load_filepaths_and_text(filename, split="|"):
|
139 |
+
with open(filename, encoding='utf-8') as f:
|
140 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
141 |
+
return filepaths_and_text
|
142 |
+
|
143 |
+
|
144 |
+
def get_hparams(init=True):
|
145 |
+
parser = argparse.ArgumentParser()
|
146 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
147 |
+
help='JSON file for configuration')
|
148 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
149 |
+
help='Model name')
|
150 |
+
|
151 |
+
args = parser.parse_args()
|
152 |
+
model_dir = os.path.join("../models", args.model)
|
153 |
+
|
154 |
+
if not os.path.exists(model_dir):
|
155 |
+
os.makedirs(model_dir)
|
156 |
+
|
157 |
+
config_path = args.config
|
158 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
159 |
+
if init:
|
160 |
+
with open(config_path, "r") as f:
|
161 |
+
data = f.read()
|
162 |
+
with open(config_save_path, "w") as f:
|
163 |
+
f.write(data)
|
164 |
+
else:
|
165 |
+
with open(config_save_path, "r") as f:
|
166 |
+
data = f.read()
|
167 |
+
config = json.loads(data)
|
168 |
+
|
169 |
+
hparams = HParams(**config)
|
170 |
+
hparams.model_dir = model_dir
|
171 |
+
return hparams
|
172 |
+
|
173 |
+
|
174 |
+
def get_hparams_from_dir(model_dir):
|
175 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
176 |
+
with open(config_save_path, "r") as f:
|
177 |
+
data = f.read()
|
178 |
+
config = json.loads(data)
|
179 |
+
|
180 |
+
hparams = HParams(**config)
|
181 |
+
hparams.model_dir = model_dir
|
182 |
+
return hparams
|
183 |
+
|
184 |
+
|
185 |
+
def get_hparams_from_file(config_path):
|
186 |
+
with open(config_path, "r") as f:
|
187 |
+
data = f.read()
|
188 |
+
config = json.loads(data)
|
189 |
+
|
190 |
+
hparams = HParams(**config)
|
191 |
+
return hparams
|
192 |
+
|
193 |
+
|
194 |
+
def check_git_hash(model_dir):
|
195 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
196 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
197 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
198 |
+
source_dir
|
199 |
+
))
|
200 |
+
return
|
201 |
+
|
202 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
203 |
+
|
204 |
+
path = os.path.join(model_dir, "githash")
|
205 |
+
if os.path.exists(path):
|
206 |
+
saved_hash = open(path).read()
|
207 |
+
if saved_hash != cur_hash:
|
208 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
209 |
+
saved_hash[:8], cur_hash[:8]))
|
210 |
+
else:
|
211 |
+
open(path, "w").write(cur_hash)
|
212 |
+
|
213 |
+
|
214 |
+
def get_logger(model_dir, filename="train.log"):
|
215 |
+
global logger
|
216 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
217 |
+
logger.setLevel(logging.DEBUG)
|
218 |
+
|
219 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
220 |
+
if not os.path.exists(model_dir):
|
221 |
+
os.makedirs(model_dir)
|
222 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
223 |
+
h.setLevel(logging.DEBUG)
|
224 |
+
h.setFormatter(formatter)
|
225 |
+
logger.addHandler(h)
|
226 |
+
return logger
|
227 |
+
|
228 |
+
|
229 |
+
class HParams():
|
230 |
+
def __init__(self, **kwargs):
|
231 |
+
for k, v in kwargs.items():
|
232 |
+
if type(v) == dict:
|
233 |
+
v = HParams(**v)
|
234 |
+
self[k] = v
|
235 |
+
|
236 |
+
def keys(self):
|
237 |
+
return self.__dict__.keys()
|
238 |
+
|
239 |
+
def items(self):
|
240 |
+
return self.__dict__.items()
|
241 |
+
|
242 |
+
def values(self):
|
243 |
+
return self.__dict__.values()
|
244 |
+
|
245 |
+
def __len__(self):
|
246 |
+
return len(self.__dict__)
|
247 |
+
|
248 |
+
def __getitem__(self, key):
|
249 |
+
return getattr(self, key)
|
250 |
+
|
251 |
+
def __setitem__(self, key, value):
|
252 |
+
return setattr(self, key, value)
|
253 |
+
|
254 |
+
def __contains__(self, key):
|
255 |
+
return key in self.__dict__
|
256 |
+
|
257 |
+
def __repr__(self):
|
258 |
+
return self.__dict__.__repr__()
|