Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from options import Banner, Video | |
from huggingface_hub import login | |
import os | |
login(token=os.getenv("TOKEN")) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
with gr.Blocks() as demo: | |
gr.Markdown("# Create your own Advertisement") | |
with gr.Tab("Banner"): | |
gr.Markdown("# Take your banner to the next LEVEL!") | |
with gr.TabItem("Create your Banner"): | |
textInput = gr.Textbox(label="Enter the text to get a good start") | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=8, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
submit = gr.Button("Submit") | |
submit.click( | |
fn=Banner.TextImage, | |
inputs=[textInput, width, height, guidance_scale, num_inference_steps], | |
outputs=gr.Image() | |
) | |
with gr.TabItem("Edit your Banner"): | |
with gr.Row(): | |
with gr.Column(): | |
input_image_editor_component = gr.ImageEditor( | |
label='Image', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) | |
with gr.Row(): | |
input_text_component = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
submit_button_component = gr.Button( | |
value='Submit', variant='primary', scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed_slicer_component = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed_checkbox_component = gr.Checkbox( | |
label="Randomize seed", value=True) | |
with gr.Row(): | |
strength_slider_component = gr.Slider( | |
label="Strength", | |
info="Indicates extent to transform the reference `image`. " | |
"Must be between 0 and 1. `image` is used as a starting " | |
"point and more noise is added the higher the `strength`.", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.85, | |
) | |
num_inference_steps_slider_component = gr.Slider( | |
label="Number of inference steps", | |
info="The number of denoising steps. More denoising steps " | |
"usually lead to a higher quality image at the", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, | |
) | |
with gr.Column(): | |
output_image_component = gr.Image( | |
type='pil', image_mode='RGB', label='Generated image', format="png") | |
with gr.Accordion("Debug", open=False): | |
output_mask_component = gr.Image( | |
type='pil', image_mode='RGB', label='Input mask', format="png") | |
with gr.Row(): | |
submit_button_component.click( | |
fn=Banner.Image2Image, | |
inputs=[ | |
input_image_editor_component, | |
input_text_component, | |
seed_slicer_component, | |
randomize_seed_checkbox_component, | |
strength_slider_component, | |
num_inference_steps_slider_component | |
], | |
outputs=[ | |
output_image_component, | |
output_mask_component | |
] | |
) | |
with gr.TabItem("Upgrade your Banner"): | |
img = gr.Image() | |
prompt = gr.Textbox(label="Enter the text to get a good start") | |
btn = gr.Button() | |
size = gr.Slider(label="Size", minimum=256, maximum=MAX_IMAGE_SIZE, step=8, value=1024) | |
out_img = gr.Image() | |
btn.click(Banner.Image2Image_2, [prompt, img,size,num_inference_steps], out_img) | |
with gr.Tab("Video"): | |
gr.Markdown("# Create your own Video") | |
img=gr.Image() | |
btn = gr.Button() | |
video=gr.Video() | |
btn.click(Video.Video, img, video) | |
demo.launch() | |