Spaces:
Running
Running
import spaces | |
import torch,os,imageio | |
from diffusers import StableVideoDiffusionPipeline | |
from diffusers.utils import load_image, export_to_video | |
from PIL import Image | |
from glob import glob | |
from pathlib import Path | |
import numpy as np | |
# Check if CUDA (GPU) is available, otherwise use CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def save_video(frames, save_path, fps, quality=9): | |
writer = imageio.get_writer(save_path, fps=fps, quality=quality) | |
for frame in frames: | |
frame = np.array(frame) | |
writer.append_data(frame) | |
writer.close() | |
# Function to generate the video | |
def Video(image): | |
pipeline = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16 | |
).to(device) | |
# Enable model offloading if using the CPU | |
if device == "cpu": | |
pipeline.enable_model_cpu_offload() | |
else: | |
pipeline.enable_sequential_cpu_offload() | |
image = Image.fromarray(image) | |
image = image.resize((1024, 576)) | |
# Set random seed for reproducibility | |
generator = torch.manual_seed(42) | |
output_folder= "outputs" | |
os.makedirs(output_folder, exist_ok=True) | |
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
# Generate the video frames | |
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0] | |
# Export the frames to a video file | |
export_to_video(frames, video_path, fps=7) | |
return video_path |