File size: 6,659 Bytes
e5cc640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b38e9
3ff693b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d38a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ff693b
236feb1
 
e5cc640
2b5dfaf
236feb1
fabba8f
2b5dfaf
 
fabba8f
57f2eec
 
 
 
 
 
 
 
ee1f727
82b38e9
6f0b323
82b38e9
57f2eec
e5cc640
fabba8f
 
 
 
 
 
e5cc640
fabba8f
e5cc640
 
 
 
 
 
 
 
 
 
f34d9ab
57f2eec
 
 
e5cc640
6f0b323
57f2eec
 
 
 
ee1f727
0d38a9c
57f2eec
 
 
e5cc640
 
 
1e8689e
e5cc640
0d38a9c
236feb1
 
0d38a9c
 
 
e5cc640
 
 
 
 
 
82b38e9
6f0b323
e5cc640
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
import os
import torch
import gradio as gr
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration

if torch.cuda.is_available():
    device = torch.device("cuda:0")
else:
    device = torch.device("cpu")

tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B").to(device)
model.eval()


class Language:
    def __init__(self, name, code):
        self.name = name
        self.code = code

lang_id = [
    Language("Afrikaans", "af"),
    Language("Albanian", "sq"),
    Language("Amharic", "am"),
    Language("Arabic", "ar"),
    Language("Armenian", "hy"),
    Language("Asturian", "ast"),
    Language("Azerbaijani", "az"),
    Language("Bashkir", "ba"),
    Language("Belarusian", "be"),
    Language("Bulgarian", "bg"),
    Language("Bengali", "bn"),
    Language("Breton", "br"),
    Language("Bosnian", "bs"),
    Language("Burmese", "my"),
    Language("Catalan", "ca"),
    Language("Cebuano", "ceb"),
    Language("Chinese","zh"),
    Language("Croatian","hr"),
    Language("Czech","cs"),
    Language("Danish","da"),
    Language("Dutch","nl"),
    Language("English","en"),
    Language("Estonian","et"),
    Language("Fulah","ff"),
    Language("Finnish","fi"),
    Language("French","fr"),
    Language("Western Frisian","fy"),
    Language("Gaelic","gd"),
    Language("Galician","gl"),
    Language("Georgian","ka"),
    Language("German","de"),
    Language("Greek","el"),
    Language("Gujarati","gu"),
    Language("Hausa","ha"),
    Language("Hebrew","he"),
    Language("Hindi","hi"),
    Language("Haitian","ht"),
    Language("Hungarian","hu"),
    Language("Irish","ga"),
    Language("Indonesian","id"),
    Language("Igbo","ig"),
    Language("Iloko","ilo"),
    Language("Icelandic","is"),
    Language("Italian","it"),
    Language("Japanese","ja"),
    Language("Javanese","jv"),
    Language("Kazakh","kk"),
    Language("Central Khmer","km"),
    Language("Kannada","kn"),
    Language("Korean","ko"),
    Language("Luxembourgish","lb"),
    Language("Ganda","lg"),
    Language("Lingala","ln"),
    Language("Lao","lo"),
    Language("Lithuanian","lt"),
    Language("Latvian","lv"),
    Language("Malagasy","mg"),
    Language("Macedonian","mk"),
    Language("Malayalam","ml"),
    Language("Mongolian","mn"),
    Language("Marathi","mr"),
    Language("Malay","ms"),
    Language("Nepali","ne"),
    Language("Norwegian","no"),
    Language("Northern Sotho","ns"),
    Language("Occitan","oc"),
    Language("Oriya","or"),
    Language("Panjabi","pa"),
    Language("Persian","fa"),
    Language("Polish","pl"),
    Language("Pushto","ps"),
    Language("Portuguese","pt"),
    Language("Romanian","ro"),
    Language("Russian","ru"),
    Language("Sindhi","sd"),
    Language("Sinhala","si"),
    Language("Slovak","sk"),
    Language("Slovenian","sl"),
    Language("Spanish","es"),
    Language("Somali","so"),
    Language("Serbian","sr"),
    Language("Serbian (cyrillic)","sr"),
    Language("Serbian (latin)","sr"),
    Language("Swati","ss"),
    Language("Sundanese","su"),
    Language("Swedish","sv"),
    Language("Swahili","sw"),
    Language("Tamil","ta"),
    Language("Thai","th"),
    Language("Tagalog","tl"),
    Language("Tswana","tn"),
    Language("Turkish","tr"),
    Language("Ukrainian","uk"),
    Language("Urdu","ur"),
    Language("Uzbek","uz"),
    Language("Vietnamese","vi"),
    Language("Welsh","cy"),
    Language("Wolof","wo"),
    Language("Xhosa","xh"),
    Language("Yiddish","yi"),
    Language("Yoruba","yo"),
    Language("Zulu","zu"),
]
d_lang = lang_id[21]
#d_lang_code = d_lang.code

def trans_page(input,trg):
    src_lang = d_lang.code
    for lang in lang_id:
        if lang.name == trg:
            trg_lang = lang.code
    if trg_lang != src_lang:
        tokenizer.src_lang = src_lang
        with torch.no_grad():
            encoded_input = tokenizer(input, return_tensors="pt").to(device)
            generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
            translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    else:
        translated_text=input
        pass

     
        
    return translated_text

def trans_to(input,src,trg):
    for lang in lang_id:
        if lang.name == trg:
            trg_lang = lang.code    
    for lang in lang_id:
        if lang.name == src:
            src_lang = lang.code       
    if trg_lang != src_lang:
 
        tokenizer.src_lang = src_lang
        with torch.no_grad():
            encoded_input = tokenizer(input, return_tensors="pt").to(device)
            generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
            translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    else:
        translated_text=input
        pass
    return translated_text

md1 = "Translate - 100 Languages"



with gr.Blocks() as transbot:
    #this=gr.State()
    with gr.Row():
        gr.Column()
        with gr.Column():
            with gr.Row():
                t_space = gr.Dropdown(label="Translate Space to:", choices=[l.name for l in lang_id], value="English")
                #t_space = gr.Dropdown(label="Translate Space", choices=list(lang_id.keys()),value="English")
                t_submit = gr.Button("Translate Space")
        gr.Column()
        
    with gr.Row():
        gr.Column()
        with gr.Column():
            md = gr.Markdown("""<h1><center>Translate - 100 Languages</center></h1><h4><center>Translation may not be accurate</center></h4>""")
            with gr.Row():

                lang_from = gr.Dropdown(label="From:", choices=[l.name for l in lang_id],value="English")
                lang_to = gr.Dropdown(label="To:", choices=[l.name for l in lang_id],value="Chinese")
                
                #lang_from = gr.Dropdown(label="From:", choices=list(lang_id.keys()),value="English")
                #lang_to = gr.Dropdown(label="To:", choices=list(lang_id.keys()),value="Chinese")
            submit = gr.Button("Go")
            with gr.Row():
                with gr.Column():
                    message = gr.Textbox(label="Prompt",placeholder="Enter Prompt",lines=4)
                    translated = gr.Textbox(label="Translated",lines=4,interactive=False)
        gr.Column()
    t_submit.click(trans_page,[md,t_space],[md])
    
    submit.click(trans_to, inputs=[message,lang_from,lang_to], outputs=[translated])
transbot.queue(concurrency_count=20)
transbot.launch()