Upload 4 files
Browse files- app.py +57 -0
- model.joblib +3 -0
- requirements.txt +5 -0
- unique_values.joblib +3 -0
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Untitled15.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1LkYVMK8AOEpUsR_FhEmhaVir9hAQSBsg
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import joblib
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import streamlit as st
|
| 13 |
+
smoking_status = {'formerly smoked': 1,
|
| 14 |
+
'never smoked ': 2,
|
| 15 |
+
'smokes': 3,
|
| 16 |
+
'Unknown': 4,
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
model = joblib.load('model.joblib')
|
| 20 |
+
unique_values = joblib.load('unique_values.joblib')
|
| 21 |
+
unique_gender = unique_values["gender"]
|
| 22 |
+
unique_ever_married = unique_values["ever_married"]
|
| 23 |
+
unique_work_type = unique_values["work_type"]
|
| 24 |
+
unique_Residence_type = unique_values["Residence_type"]
|
| 25 |
+
unique_smoking_status = unique_values["smoking_status"]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def main():
|
| 29 |
+
st.title("Adult Income Analysis")
|
| 30 |
+
with st.form("questionaire"):
|
| 31 |
+
age = st.slider("age", min_value=0, max_value=100)
|
| 32 |
+
gender = st.selectbox("gender", unique_gender)
|
| 33 |
+
hypertension = st.slider("hypertension", min_value=0, max_value=1)
|
| 34 |
+
heart_disease = st.slider("heart_disease", min_value=0, max_value=1)
|
| 35 |
+
ever_married = st.selectbox("ever_married", unique_ever_married)
|
| 36 |
+
work_type = st.selectbox("work_type", unique_work_type)
|
| 37 |
+
Residence_type = st.selectbox("Residence_type", unique_Residence_type)
|
| 38 |
+
avg_glucose_level = st.slider("avg_glucose_level", min_value=0, max_value=300)
|
| 39 |
+
bmi = st.slider("bmi", min_value=0, max_value=100)
|
| 40 |
+
smoking_status = st.selectbox("smoking_status", unique_smoking_status)
|
| 41 |
+
|
| 42 |
+
clicked = st.form_submit_button("Predict stroke")
|
| 43 |
+
if clicked:
|
| 44 |
+
result=model.predict(pd.DataFrame({"age": [age],
|
| 45 |
+
"gender": [gender],
|
| 46 |
+
"hypertension": [hypertension],
|
| 47 |
+
"heart_disease": [heart_disease],
|
| 48 |
+
"ever_married": [ever_married],
|
| 49 |
+
"work_type": [work_type],
|
| 50 |
+
"Residence_type": [Residence_type],
|
| 51 |
+
"avg_glucose_level": [avg_glucose_level],
|
| 52 |
+
"bmi": [bmi],
|
| 53 |
+
"smoking_status":[smoking_status]}))
|
| 54 |
+
result = '1' if result[0] == 1 else '0'
|
| 55 |
+
st.success('The predicted stroke is {}'.format(result))
|
| 56 |
+
if __name__=='__main__':
|
| 57 |
+
main()
|
model.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6074ed90c8d54cda47c2f4649c85593f868ca8f25e25fcd3cf3f8b9e1af01ea4
|
| 3 |
+
size 76513
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
joblib
|
| 2 |
+
pandas
|
| 3 |
+
scikit-learn==1.2.2
|
| 4 |
+
xgboost==1.7.6
|
| 5 |
+
altair<5
|
unique_values.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d50a7d378062a047249d0a3a123de19866e62dcf3d47aae7acbded938be46d45
|
| 3 |
+
size 1425
|