import streamlit as st from transformers import AutoModel, AutoTokenizer, trainer_utils # Load the model and tokenizer outside the text generation function device = "cpu" model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") # Function to generate text def generate_text(input_text, max_tokens=50): x_token = tokenizer(input_text, return_tensors="pt") trainer_utils.set_seed(30) input_ids = x_token.input_ids.to(device) gen_token = model.generate(input_ids, max_new_tokens=max_tokens) return tokenizer.decode(gen_token[0]) # Streamlit app def main(): st.title("Japanese Text Generator") # Input text input_text = st.text_area("Enter the starting text:", "織田信長は、") # Max tokens max_tokens = st.slider("Max Tokens", 1, 100, 50) # Generate button if st.button("Generate Text"): generated_text = generate_text(input_text, max_tokens) st.text("Generated Text:") st.write(generated_text) if __name__ == "__main__": main()