File size: 1,453 Bytes
5c869b1
 
 
eb47558
5c869b1
 
 
 
 
 
6bfd93c
 
7b70bdf
6bfd93c
e6a63bf
6bfd93c
 
 
 
eb47558
 
 
 
 
6bfd93c
eb47558
6bfd93c
 
 
5e93a7e
6bfd93c
 
 
a6c7076
 
 
eb47558
 
 
 
c115721
 
a6c7076
 
b5d7b7a
a6c7076
 
6bfd93c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os

# コマンドを実行する
os.system("pip install transformers torch psutil")

# コマンドの実行結果を取得する(stdoutとstderrは出力されない)
result = os.system("pip install transformers")



from transformers import AutoModel, AutoTokenizer, trainer_utils
import gradio as gr
import psutil

device = "cpu"
model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device)
tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
trainer_utils.set_seed(30)

def get_memory_usage():
    process = psutil.Process()
    memory_usage = process.memory_info().rss / 1024 / 1024  # メモリ使用量をMB単位で取得
    return f"Memory Usage: {memory_usage:.2f} MB"
    
def generate_text(input_text):
    usag=get_memory_usage()
    x_token = tokenizer("", prefix_text=input_text, return_tensors="pt")
    input_ids = x_token.input_ids.to(device)
    token_type_ids = x_token.token_type_ids.to(device)
    gen_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=150)
    output_text = tokenizer.decode(gen_token[0])
    return output_text

input_text = gr.inputs.Textbox(lines=5, label="Input Text")
output_text = gr.outputs.Textbox(label="Generated Text")





interface = gr.Interface(
    fn=generate_text,
    inputs=input_text,
    outputs=output_text,
    title=get_memory_usage(),
    description="Enter a prompt in Japanese to generate text."
)
interface.launch()