InteriorDesignerPro / models.py
PandaArtStation's picture
Create models.py
e9d3a3c verified
import torch
from diffusers import (
StableDiffusionXLImg2ImgPipeline,
StableDiffusionInpaintPipeline,
DDIMScheduler,
PNDMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler
)
from PIL import Image, ImageFilter, ImageEnhance
import numpy as np
import cv2
class InteriorDesignerPro:
def __init__(self):
self.device = torch.device("cuda") # ТОЛЬКО GPU!
self.model_name = "RealVisXL V4.0"
# Проверка GPU
gpu_name = torch.cuda.get_device_name(0)
self.is_powerful_gpu = any(gpu in gpu_name for gpu in ['A100', 'H100', 'RTX 4090', 'RTX 3090', 'T4', 'A10G'])
# Основная модель - RealVisXL V4
print(f"Loading {self.model_name} on {gpu_name}...")
self.pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
).to(self.device)
# БЕЗ enable_model_cpu_offload() и enable_vae_slicing() - они замедляют H200!
# Настройка scheduler для качества
self.pipe.scheduler = EulerDiscreteScheduler.from_config(self.pipe.scheduler.config)
# Inpainting модель
try:
self.inpaint_pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
safety_checker=None,
requires_safety_checker=False,
local_files_only=False,
resume_download=True
).to(self.device)
print("Inpainting model loaded")
except Exception as e:
print(f"Warning: Could not load inpainting model: {e}")
print("Using img2img as fallback for object removal")
self.inpaint_pipe = None
@torch.inference_mode()
def apply_style_pro(self, image, style_name, room_type, strength=0.75, quality="balanced", custom_prompt=None, custom_negative=None):
"""Применение стиля к изображению"""
from design_styles import DESIGN_STYLES
# Ресайз для скорости
original_size = image.size
if image.width > 768 or image.height > 768:
image.thumbnail((768, 768), Image.Resampling.LANCZOS)
if style_name == "custom" and custom_prompt:
# Кастомный промпт
full_prompt = custom_prompt
negative = custom_negative or "low quality, blurry"
else:
# Предустановленный стиль
style = DESIGN_STYLES.get(style_name, DESIGN_STYLES["Современный минимализм"])
room_specific = style.get("room_specific", {}).get(room_type, "")
full_prompt = f"{style['prompt']}, {room_specific}, {room_type} interior design, professional photo, high quality, 8k, photorealistic"
negative = style.get("negative", "low quality, blurry")
# Настройки качества - оптимизированные для H200
quality_settings = {
"fast": {"steps": 15, "guidance": 6.0},
"balanced": {"steps": 20, "guidance": 7.0},
"ultra": {"steps": 30, "guidance": 8.0}
}
settings = quality_settings.get(quality, quality_settings["balanced"])
# Генерация с SDXL
result = self.pipe(
prompt=full_prompt,
prompt_2=full_prompt, # Для SDXL
negative_prompt=negative,
negative_prompt_2=negative, # Для SDXL
image=image,
strength=strength,
num_inference_steps=settings["steps"],
guidance_scale=settings["guidance"],
# SDXL параметры - оптимизированные
original_size=(768, 768),
target_size=(768, 768)
).images[0]
# Возвращаем к оригинальному размеру если нужно
if result.size != original_size and max(original_size) <= 1024:
result = result.resize(original_size, Image.Resampling.LANCZOS)
return result
def create_variations(self, image, num_variations=4):
"""Создание вариаций дизайна"""
variations = []
base_seed = torch.randint(0, 1000000, (1,)).item()
# Ресайз для скорости
if image.width > 768 or image.height > 768:
image.thumbnail((768, 768), Image.Resampling.LANCZOS)
for i in range(num_variations):
torch.manual_seed(base_seed + i)
var = self.pipe(
prompt="interior design variation, same style, different details",
prompt_2="interior design variation, same style, different details",
image=image,
strength=0.4 + (i * 0.05),
num_inference_steps=20, # Меньше шагов для скорости
guidance_scale=6.0
).images[0]
variations.append(var)
return variations
def create_hdr_lighting(self, image, intensity=0.3):
"""Улучшение освещения в стиле HDR"""
# Конвертируем в numpy
img_array = np.array(image)
# Применяем CLAHE для улучшения контраста
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
l_clahe = clahe.apply(l)
enhanced_lab = cv2.merge([l_clahe, a, b])
enhanced_rgb = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
# Смешиваем с оригиналом
result = cv2.addWeighted(img_array, 1-intensity, enhanced_rgb, intensity, 0)
return Image.fromarray(result)
def enhance_details(self, image):
"""Улучшение деталей изображения"""
# Увеличиваем резкость
enhancer = ImageEnhance.Sharpness(image)
sharp = enhancer.enhance(1.5)
# Немного увеличиваем контраст
enhancer = ImageEnhance.Contrast(sharp)
contrast = enhancer.enhance(1.1)
return contrast
def change_element(self, image, element, value, strength=0.7):
"""Изменение отдельного элемента интерьера"""
from design_styles import ROOM_ELEMENTS
# Ресайз для скорости
original_size = image.size
if image.width > 768 or image.height > 768:
image.thumbnail((768, 768), Image.Resampling.LANCZOS)
element_info = ROOM_ELEMENTS.get(element, {})
prompt_add = element_info.get("prompt_add", element.lower())
prompt = f"interior with {value} {prompt_add}, professional photo"
negative = f"old {element}, damaged, ugly"
result = self.pipe(
prompt=prompt,
prompt_2=prompt, # Для SDXL
negative_prompt=negative,
negative_prompt_2=negative,
image=image,
strength=min(strength, 0.8), # Ограничиваем для скорости
num_inference_steps=20, # Оптимизировано для H200
guidance_scale=6.0
).images[0]
# Возвращаем к оригинальному размеру
if result.size != original_size:
result = result.resize(original_size, Image.Resampling.LANCZOS)
return result
def create_style_comparison(self, image, styles, quality="fast"):
"""Создание сравнения стилей"""
results = []
# Настройки для быстрой генерации
steps = 15 if quality == "fast" else 20
for style in styles:
styled = self.apply_style_pro(
image,
style,
"living room", # default
strength=0.75,
quality=quality
)
results.append((style, styled))
return results
class ObjectRemover:
"""Класс для удаления объектов - оптимизированный"""
def __init__(self, inpaint_pipe):
self.pipe = inpaint_pipe
self.device = torch.device("cuda")
def remove_objects(self, image, mask):
"""Удаление объектов с изображения"""
if self.pipe is None:
# Fallback на простое заполнение
return self.simple_inpaint(image, mask)
try:
# Используем inpainting pipeline с оптимизированными параметрами
result = self.pipe(
prompt="empty room interior, clean wall, seamless texture",
negative_prompt="furniture, objects, people, clutter",
image=image,
mask_image=mask,
strength=0.95, # Немного меньше для скорости
num_inference_steps=25, # Оптимизировано!
guidance_scale=5.0 # Меньше для скорости
).images[0]
return result
except Exception as e:
print(f"Inpainting failed: {e}, using OpenCV fallback")
return self.simple_inpaint(image, mask)
def simple_inpaint(self, image, mask):
"""Простое заполнение через OpenCV - очень быстро"""
img_array = np.array(image)
mask_array = np.array(mask.convert('L'))
# Инпейнтинг через OpenCV
result = cv2.inpaint(img_array, mask_array, 3, cv2.INPAINT_TELEA)
return Image.fromarray(result)
def generate_mask_from_text(self, image, text_description, precision=0.3):
"""Генерация маски на основе текстового описания"""
# Простая маска в центре (заглушка)
# В реальности тут должен быть CLIP или SAM
width, height = image.size
mask = Image.new('L', (width, height), 0)
# Создаем маску в центре
center_x, center_y = width // 2, height // 2
radius = int(min(width, height) * precision)
# Рисуем круг
from PIL import ImageDraw
draw = ImageDraw.Draw(mask)
draw.ellipse([center_x - radius, center_y - radius,
center_x + radius, center_y + radius], fill=255)
return mask