Spaces:
Sleeping
Sleeping
from keras.models import load_model | |
import numpy as np # linear algebra | |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) | |
import matplotlib.pyplot as plt | |
from numpy import load | |
import gradio as gr | |
# from keras.datasets import mnist | |
import keras.utils.np_utils as ku | |
import keras.models as models | |
import keras.layers as layers | |
from keras import regularizers | |
import numpy.random as nr | |
# save numpy array as npy file | |
from numpy import asarray | |
from numpy import save | |
# save to npy file | |
import keras | |
from keras.layers import Dropout | |
from keras.preprocessing.image import ImageDataGenerator | |
from tensorflow.keras.optimizers import RMSprop,Adam | |
from tensorflow.keras.layers import BatchNormalization | |
from sklearn.metrics import confusion_matrix | |
import warnings | |
warnings.simplefilter(action='ignore') | |
from PIL import Image, ImageFilter | |
# %matplotlib inline | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
nn = load_model('my_model-2.h5') | |
def predict_image(img): | |
print("Digit Recognizer") | |
img_3d=img.reshape(-1,28,28) | |
im_resize=img_3d/255.0 | |
prediction=nn.predict(im_resize).tolist()[0] | |
return {str(i):prediction[i] for i in range(10)} | |
''' | |
with gr.Blocks() as demo: | |
gr.Title("Digit Recognizer") | |
ac_inputs=gr.Sketchpad() | |
ac_outputs=gr.outputs.Label(num_top_classes=3) | |
greet_btn = gr.Button("Greet") | |
gr.interface(fn=predict_image, inputs="sketchpad",outputs=gr.outputs.Label(num_top_classes=3)) | |
''' | |
label=gr.outputs.Label(num_top_classes=3) | |
iface=gr.Interface(predict_image, inputs="sketchpad",outputs=label,title=f"Digit Recognizer",allow_flagging='manual',description="Note:Draw Digits from 0-9 and Try to Draw the Digit in the center for better accuracy") | |
iface.launch(debug='True') | |