Spaces:
Build error
Build error
Commit
·
2650437
1
Parent(s):
e750e94
Improved app layout
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Tranception Design
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: Tranception Design
|
| 3 |
+
emoji: 🧬
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
app.py
CHANGED
|
@@ -38,45 +38,71 @@ def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=No
|
|
| 38 |
all_single_mutants.columns = ['mutant','mutated_sequence']
|
| 39 |
return all_single_mutants
|
| 40 |
|
| 41 |
-
def create_scoring_matrix_visual(scores,sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None):
|
| 42 |
-
piv=scores.pivot(index='position',columns='target_AA',values='avg_score').
|
| 43 |
-
fig, ax = plt.subplots(figsize=(len(sequence)*
|
| 44 |
scores_dict = {}
|
| 45 |
valid_mutant_set=set(scores.mutant)
|
| 46 |
if mutation_range_start is None: mutation_range_start=1
|
| 47 |
if mutation_range_end is None: mutation_range_end=len(sequence)
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
for position in range(mutation_range_start,mutation_range_end+1):
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
heat.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
plt.savefig('fitness_scoring_substitution_matrix.png')
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
def suggest_mutations(scores):
|
| 67 |
intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
|
| 68 |
#Best mutants
|
| 69 |
top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
#Best positions
|
| 72 |
positive_scores = scores[scores.avg_score > 0]
|
| 73 |
positive_scores_position_avg = positive_scores.groupby(['position']).mean()
|
| 74 |
top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5).index.astype(str))
|
| 75 |
print(top_positions)
|
| 76 |
-
position_recos = "The
|
| 77 |
return intro_message+mutant_recos+position_recos
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def get_mutated_protein(sequence,mutant):
|
|
|
|
| 80 |
mutated_sequence = list(sequence)
|
| 81 |
mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
|
| 82 |
return ''.join(mutated_sequence)
|
|
@@ -101,40 +127,113 @@ def score_and_create_matrix_all_singles(sequence,mutation_range_start=None,mutat
|
|
| 101 |
scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
|
| 102 |
scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
|
| 103 |
score_heatmap = create_scoring_matrix_visual(scores,sequence,AA_vocab,mutation_range_start,mutation_range_end)
|
| 104 |
-
return score_heatmap,suggest_mutations(scores)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
#######################################################################################################################################
|
| 107 |
############################################### GRADIO INTERFACE ####################################################################
|
| 108 |
#######################################################################################################################################
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
-
fn=score_and_create_matrix_all_singles,
|
| 133 |
-
inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror],
|
| 134 |
-
outputs=[output_plot,output_recommendations],
|
| 135 |
-
title=title,
|
| 136 |
-
description=description,
|
| 137 |
-
article=article,
|
| 138 |
-
##examples=examples,
|
| 139 |
-
allow_flagging="never"
|
| 140 |
-
).launch(debug=True)
|
|
|
|
| 38 |
all_single_mutants.columns = ['mutant','mutated_sequence']
|
| 39 |
return all_single_mutants
|
| 40 |
|
| 41 |
+
def create_scoring_matrix_visual(scores,sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None,annotate=True,fontsize=20):
|
| 42 |
+
piv=scores.pivot(index='position',columns='target_AA',values='avg_score').round(4)
|
| 43 |
+
fig, ax = plt.subplots(figsize=(50,len(sequence)*0.6))
|
| 44 |
scores_dict = {}
|
| 45 |
valid_mutant_set=set(scores.mutant)
|
| 46 |
if mutation_range_start is None: mutation_range_start=1
|
| 47 |
if mutation_range_end is None: mutation_range_end=len(sequence)
|
| 48 |
+
ax.tick_params(bottom=True, top=True, left=True, right=True)
|
| 49 |
+
ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True)
|
| 50 |
+
if annotate:
|
| 51 |
for position in range(mutation_range_start,mutation_range_end+1):
|
| 52 |
+
for target_AA in list(AA_vocab):
|
| 53 |
+
mutant = sequence[position-1]+str(position)+target_AA
|
| 54 |
+
if mutant in valid_mutant_set:
|
| 55 |
+
scores_dict[mutant]= float(scores.loc[scores.mutant==mutant,'avg_score'])
|
| 56 |
+
else:
|
| 57 |
+
scores_dict[mutant]=0.0
|
| 58 |
+
labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_end-mutation_range_start+1,len(AA_vocab))
|
| 59 |
+
heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
|
| 60 |
+
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
|
| 61 |
+
else:
|
| 62 |
+
heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
|
| 63 |
+
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
|
| 64 |
+
heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5))
|
| 65 |
+
heat.figure.axes[-1].yaxis.set_ticklabels(heat.figure.axes[-1].yaxis.get_ticklabels(), fontsize=fontsize)
|
| 66 |
+
heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40)
|
| 67 |
+
heat.set_ylabel("Sequence position", fontsize = fontsize*2)
|
| 68 |
+
heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2)
|
| 69 |
+
yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)]
|
| 70 |
+
heat.set_yticklabels(yticklabels)
|
| 71 |
+
heat.set_xticklabels(heat.get_xmajorticklabels(), fontsize = fontsize)
|
| 72 |
+
heat.set_yticklabels(heat.get_ymajorticklabels(), fontsize = fontsize, rotation=0)
|
| 73 |
+
plt.tight_layout()
|
| 74 |
plt.savefig('fitness_scoring_substitution_matrix.png')
|
| 75 |
+
plt.show()
|
| 76 |
+
return 'fitness_scoring_substitution_matrix.png'
|
| 77 |
|
| 78 |
def suggest_mutations(scores):
|
| 79 |
intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
|
| 80 |
#Best mutants
|
| 81 |
top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
|
| 82 |
+
top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score)
|
| 83 |
+
top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)]
|
| 84 |
+
mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos))
|
| 85 |
#Best positions
|
| 86 |
positive_scores = scores[scores.avg_score > 0]
|
| 87 |
positive_scores_position_avg = positive_scores.groupby(['position']).mean()
|
| 88 |
top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5).index.astype(str))
|
| 89 |
print(top_positions)
|
| 90 |
+
position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions))
|
| 91 |
return intro_message+mutant_recos+position_recos
|
| 92 |
|
| 93 |
+
def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab):
|
| 94 |
+
valid = True
|
| 95 |
+
try:
|
| 96 |
+
from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1]
|
| 97 |
+
except:
|
| 98 |
+
valid = False
|
| 99 |
+
if sequence[position-1]!=from_AA: valid=False
|
| 100 |
+
if position<1 or position>len(sequence): valid=False
|
| 101 |
+
if to_AA not in AA_vocab: valid=False
|
| 102 |
+
return valid
|
| 103 |
+
|
| 104 |
def get_mutated_protein(sequence,mutant):
|
| 105 |
+
assert check_valid_mutant(sequence,mutant), "The mutant is not valid"
|
| 106 |
mutated_sequence = list(sequence)
|
| 107 |
mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
|
| 108 |
return ''.join(mutated_sequence)
|
|
|
|
| 127 |
scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
|
| 128 |
scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
|
| 129 |
score_heatmap = create_scoring_matrix_visual(scores,sequence,AA_vocab,mutation_range_start,mutation_range_end)
|
| 130 |
+
return [score_heatmap],suggest_mutations(scores)
|
| 131 |
+
|
| 132 |
+
def extract_sequence(example):
|
| 133 |
+
label, taxon, sequence = example
|
| 134 |
+
return sequence
|
| 135 |
+
|
| 136 |
+
def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end):
|
| 137 |
+
protein_sequence_input = ""
|
| 138 |
+
mutation_range_start = None
|
| 139 |
+
mutation_range_end = None
|
| 140 |
+
return protein_sequence_input,mutation_range_start,mutation_range_end
|
| 141 |
|
| 142 |
#######################################################################################################################################
|
| 143 |
############################################### GRADIO INTERFACE ####################################################################
|
| 144 |
#######################################################################################################################################
|
| 145 |
|
| 146 |
+
tranception_design = gr.Blocks()
|
| 147 |
+
|
| 148 |
+
with tranception_design:
|
| 149 |
+
gr.Markdown("# Interactive in silico directed evolution with Tranception")
|
| 150 |
+
gr.Markdown(" Perform in silico directed evolution with Tranception to iteratively improve the fitness of a protein of interest, one mutation at a time. At each step, the Tranception model computes the log likelihood ratios of all possible single amino acid substitution Vs the starting sequence, and outputs a fitness heatmap and recommandations to guide the selection of the mutation to apply.")
|
| 151 |
+
|
| 152 |
+
with gr.Tabs():
|
| 153 |
+
with gr.TabItem("Input"):
|
| 154 |
+
with gr.Row():
|
| 155 |
+
protein_sequence_input = gr.Textbox(lines=1,
|
| 156 |
+
label="Protein sequence",
|
| 157 |
+
placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)"
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
with gr.Row():
|
| 161 |
+
mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)",value=1,precision=0)
|
| 162 |
+
mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)",value=10,precision=0)
|
| 163 |
|
| 164 |
+
with gr.TabItem("Parameters"):
|
| 165 |
+
with gr.Row():
|
| 166 |
+
model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)",
|
| 167 |
+
choices=["Small","Medium","Large"],
|
| 168 |
+
value="Small")
|
| 169 |
+
with gr.Row():
|
| 170 |
+
scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)")
|
| 171 |
+
with gr.Row():
|
| 172 |
+
gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.")
|
| 173 |
+
with gr.Row():
|
| 174 |
+
clear_button = gr.Button(value="Clear",variant="secondary")
|
| 175 |
+
run_button = gr.Button(value="Predict fitness",variant="primary")
|
| 176 |
+
protein_ID = gr.Textbox(label="Uniprot ID", visible=False)
|
| 177 |
+
taxon = gr.Textbox(label="Taxon", visible=False)
|
| 178 |
+
examples = gr.Examples(
|
| 179 |
+
inputs=[protein_ID, taxon, protein_sequence_input],
|
| 180 |
+
outputs=[protein_sequence_input],
|
| 181 |
+
fn=extract_sequence,
|
| 182 |
+
examples=[
|
| 183 |
+
['ADRB2_HUMAN' ,'Human', 'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'],
|
| 184 |
+
['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
|
| 185 |
+
['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
|
| 186 |
+
['BLAT_ECOLX' ,'Prokaryote', 'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'],
|
| 187 |
+
['BRCA1_HUMAN' ,'Human', 'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'],
|
| 188 |
+
['CALM1_HUMAN' ,'Human', 'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'],
|
| 189 |
+
['CCDB_ECOLI' ,'Prokaryote', 'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'],
|
| 190 |
+
['GFP_AEQVI' ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'],
|
| 191 |
+
['GRB2_HUMAN' ,'Human', 'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'],
|
| 192 |
+
['HSP82_YEAST' ,'Eukaryote ', 'MASETFEFQAEITQLMSLIINTVYSNKEIFLRELISNASDALDKIRYKSLSDPKQLETEPDLFIRITPKPEQKVLEIRDSGIGMTKAELINNLGTIAKSGTKAFMEALSAGADVSMIGQFGVGFYSLFLVADRVQVISKSNDDEQYIWESNAGGSFTVTLDEVNERIGRGTILRLFLKDDQLEYLEEKRIKEVIKRHSEFVAYPIQLVVTKEVEKEVPIPEEEKKDEEKKDEEKKDEDDKKPKLEEVDEEEEKKPKTKKVKEEVQEIEELNKTKPLWTRNPSDITQEEYNAFYKSISNDWEDPLYVKHFSVEGQLEFRAILFIPKRAPFDLFESKKKKNNIKLYVRRVFITDEAEDLIPEWLSFVKGVVDSEDLPLNLSREMLQQNKIMKVIRKNIVKKLIEAFNEIAEDSEQFEKFYSAFSKNIKLGVHEDTQNRAALAKLLRYNSTKSVDELTSLTDYVTRMPEHQKNIYYITGESLKAVEKSPFLDALKAKNFEVLFLTDPIDEYAFTQLKEFEGKTLVDITKDFELEETDEEKAEREKEIKEYEPLTKALKEILGDQVEKVVVSYKLLDAPAAIRTGQFGWSANMERIMKAQALRDSSMSSYMSSKKTFEISPKSPIIKELKKRVDEGGAQDKTVKDLTKLLYETALLTSGFSLDEPTSFASRINRLISLGLNIDEDEETETAPEASTAAPVEEVPADTEMEEVD'],
|
| 193 |
+
['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
|
| 194 |
+
['KCNH2_HUMAN' ,'Human', 'MPVRRGHVAPQNTFLDTIIRKFEGQSRKFIIANARVENCAVIYCNDGFCELCGYSRAEVMQRPCTCDFLHGPRTQRRAAAQIAQALLGAEERKVEIAFYRKDGSCFLCLVDVVPVKNEDGAVIMFILNFEVVMEKDMVGSPAHDTNHRGPPTSWLAPGRAKTFRLKLPALLALTARESSVRSGGAGGAGAPGAVVVDVDLTPAAPSSESLALDEVTAMDNHVAGLGPAEERRALVGPGSPPRSAPGQLPSPRAHSLNPDASGSSCSLARTRSRESCASVRRASSADDIEAMRAGVLPPPPRHASTGAMHPLRSGLLNSTSDSDLVRYRTISKIPQITLNFVDLKGDPFLASPTSDREIIAPKIKERTHNVTEKVTQVLSLGADVLPEYKLQAPRIHRWTILHYSPFKAVWDWLILLLVIYTAVFTPYSAAFLLKETEEGPPATECGYACQPLAVVDLIVDIMFIVDILINFRTTYVNANEEVVSHPGRIAVHYFKGWFLIDMVAAIPFDLLIFGSGSEELIGLLKTARLLRLVRVARKLDRYSEYGAAVLFLLMCTFALIAHWLACIWYAIGNMEQPHMDSRIGWLHNLGDQIGKPYNSSGLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVSAIIQRLYSGTARYHTQMLRVREFIRFHQIPNPLRQRLEEYFQHAWSYTNGIDMNAVLKGFPECLQADICLHLNRSLLQHCKPFRGATKGCLRALAMKFKTTHAPPGDTLVHAGDLLTALYFISRGSIEILRGDVVVAILGKNDIFGEPLNLYARPGKSNGDVRALTYCDLHKIHRDDLLEVLDMYPEFSDHFWSSLEITFNLRDTNMIPGSPGSTELEGGFSRQRKRKLSFRRRTDKDTEQPGEVSALGPGRAGAGPSSRGRPGGPWGESPSSGPSSPESSEDEGPGRSSSPLRLVPFSSPRPPGEPPGGEPLMEDCEKSSDTCNPLSGAFSGVSNIFSFWGDSRGRQYQELPRCPAPTPSLLNIPLSSPGRRPRGDVESRLDALQRQLNRLETRLSADMATVLQLLQRQMTLVPPAYSAVTTPGPGPTSTSPLLPVSPLPTLTLDSLSQVSQFMACEELPPGAPELPQEGPTRRLSLPGQLGALTSQPLHRHGSDPGS'],
|
| 195 |
+
['KKA2_KLEPN' ,'Prokaryote', 'MIEQDGLHAGSPAAWVERLFGYDWAQQTIGCSDAAVFRLSAQGRPVLFVKTDLSGALNELQDEAARLSWLATTGVPCAAVLDVVTEAGRDWLLLGEVPGQDLLSSHLAPAEKVSIMADAMRRLHTLDPATCPFDHQAKHRIERARTRMEAGLVDQDDLDEEHQGLAPAELFARLKARMPDGEDLVVTHGDACLPNIMVENGRFSGFIDCGRLGVADRYQDIALATRDIAEELGGEWADRFLVLYGIAAPDSQRIAFYRLLDEFF'],
|
| 196 |
+
['MSH2_HUMAN' ,'Human', 'MAVQPKETLQLESAAEVGFVRFFQGMPEKPTTTVRLFDRGDFYTAHGEDALLAAREVFKTQGVIKYMGPAGAKNLQSVVLSKMNFESFVKDLLLVRQYRVEVYKNRAGNKASKENDWYLAYKASPGNLSQFEDILFGNNDMSASIGVVGVKMSAVDGQRQVGVGYVDSIQRKLGLCEFPDNDQFSNLEALLIQIGPKECVLPGGETAGDMGKLRQIIQRGGILITERKKADFSTKDIYQDLNRLLKGKKGEQMNSAVLPEMENQVAVSSLSAVIKFLELLSDDSNFGQFELTTFDFSQYMKLDIAAVRALNLFQGSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDLLRRFPDLNRLAKKFQRQAANLQDCYRLYQGINQLPNVIQALEKHEGKHQKLLLAVFVTPLTDLRSDFSKFQEMIETTLDMDQVENHEFLVKPSFDPNLSELREIMNDLEKKMQSTLISAARDLGLDPGKQIKLDSSAQFGYYFRVTCKEEKVLRNNKNFSTVDIQKNGVKFTNSKLTSLNEEYTKNKTEYEEAQDAIVKEIVNISSGYVEPMQTLNDVLAQLDAVVSFAHVSNGAPVPYVRPAILEKGQGRIILKASRHACVEVQDEIAFIPNDVYFEKDKQMFHIITGPNMGGKSTYIRQTGVIVLMAQIGCFVPCESAEVSIVDCILARVGAGDSQLKGVSTFMAEMLETASILRSATKDSLIIIDELGRGTSTYDGFGLAWAISEYIATKIGAFCMFATHFHELTALANQIPTVNNLHVTALTTEETLTMLYQVKKGVCDQSFGIHVAELANFPKHVIECAKQKALELEEFQYIGESQGYDIMEPAAKKCYLEREQGEKIIQEFLSKVKQMPFTEMSEENITIKLKQLKAEVIAKNNSFVNEIISRIKVTT'],
|
| 197 |
+
['PABP_YEAST' ,'Other eukaryote', 'MADITDKTAEQLENLNIQDDQKQAATGSESQSVENSSASLYVGDLEPSVSEAHLYDIFSPIGSVSSIRVCRDAITKTSLGYAYVNFNDHEAGRKAIEQLNYTPIKGRLCRIMWSQRDPSLRKKGSGNIFIKNLHPDIDNKALYDTFSVFGDILSSKIATDENGKSKGFGFVHFEEEGAAKEAIDALNGMLLNGQEIYVAPHLSRKERDSQLEETKAHYTNLYVKNINSETTDEQFQELFAKFGPIVSASLEKDADGKLKGFGFVNYEKHEDAVKAVEALNDSELNGEKLYVGRAQKKNERMHVLKKQYEAYRLEKMAKYQGVNLFVKNLDDSVDDEKLEEEFAPYGTITSAKVMRTENGKSKGFGFVCFSTPEEATKAITEKNQQIVAGKPLYVAIAQRKDVRRSQLAQQIQARNQMRYQQATAAAAAAAAGMPGQFMPPMFYGVMPPRGVPFNGPNPQQMNPMGGMPKNGMPPQFRNGPVYGVPPQGGFPRNANDNNQFYQQKQRQALGEQLYKKVSAKTSNEEAAGKITGMILDLPPQEVFPLLESDELFEQHYKEASAAYESFKKEQEQQTEQA'],
|
| 198 |
+
['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
|
| 199 |
+
['PTEN_HUMAN' ,'Human', 'MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV'],
|
| 200 |
+
['RL40A_YEAST' ,'Eukaryote ', 'MQIFVKTLTGKTITLEVESSDTIDNVKSKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGIIEPSLKALASKYNCDKSVCRKCYARLPPRATNCRKRKCGHTNQLRPKKKLK'],
|
| 201 |
+
['SCN5A_HUMAN' ,'Human', 'MANFLLPRGTSSFRRFTRESLAAIEKRMAEKQARGSTTLQESREGLPEEEAPRPQLDLQASKKLPDLYGNPPQELIGEPLEDLDPFYSTQKTFIVLNKGKTIFRFSATNALYVLSPFHPIRRAAVKILVHSLFNMLIMCTILTNCVFMAQHDPPPWTKYVEYTFTAIYTFESLVKILARGFCLHAFTFLRDPWNWLDFSVIIMAYTTEFVDLGNVSALRTFRVLRALKTISVISGLKTIVGALIQSVKKLADVMVLTVFCLSVFALIGLQLFMGNLRHKCVRNFTALNGTNGSVEADGLVWESLDLYLSDPENYLLKNGTSDVLLCGNSSDAGTCPEGYRCLKAGENPDHGYTSFDSFAWAFLALFRLMTQDCWERLYQQTLRSAGKIYMIFFMLVIFLGSFYLVNLILAVVAMAYEEQNQATIAETEEKEKRFQEAMEMLKKEHEALTIRGVDTVSRSSLEMSPLAPVNSHERRSKRRKRMSSGTEECGEDRLPKSDSEDGPRAMNHLSLTRGLSRTSMKPRSSRGSIFTFRRRDLGSEADFADDENSTAGESESHHTSLLVPWPLRRTSAQGQPSPGTSAPGHALHGKKNSTVDCNGVVSLLGAGDPEATSPGSHLLRPVMLEHPPDTTTPSEEPGGPQMLTSQAPCVDGFEEPGARQRALSAVSVLTSALEELEESRHKCPPCWNRLAQRYLIWECCPLWMSIKQGVKLVVMDPFTDLTITMCIVLNTLFMALEHYNMTSEFEEMLQVGNLVFTGIFTAEMTFKIIALDPYYYFQQGWNIFDSIIVILSLMELGLSRMSNLSVLRSFRLLRVFKLAKSWPTLNTLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKNYSELRDSDSGLLPRWHMMDFFHAFLIIFRILCGEWIETMWDCMEVSGQSLCLLVFLLVMVIGNLVVLNLFLALLLSSFSADNLTAPDEDREMNNLQLALARIQRGLRFVKRTTWDFCCGLLRQRPQKPAALAAQGQLPSCIATPYSPPPPETEKVPPTRKETRFEEGEQPGQGTPGDPEPVCVPIAVAESDTDDQEEDEENSLGTEEESSKQQESQPVSGGPEAPPDSRTWSQVSATASSEAEASASQADWRQQWKAEPQAPGCGETPEDSCSEGSTADMTNTAELLEQIPDLGQDVKDPEDCFTEGCVRRCPCCAVDTTQAPGKVWWRLRKTCYHIVEHSWFETFIIFMILLSSGALAFEDIYLEERKTIKVLLEYADKMFTYVFVLEMLLKWVAYGFKKYFTNAWCWLDFLIVDVSLVSLVANTLGFAEMGPIKSLRTLRALRPLRALSRFEGMRVVVNALVGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGKFGRCINQTEGDLPLNYTIVNNKSQCESLNLTGELYWTKVKVNFDNVGAGYLALLQVATFKGWMDIMYAAVDSRGYEEQPQWEYNLYMYIYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPLNKYQGFIFDIVTKQAFDVTIMFLICLNMVTMMVETDDQSPEKINILAKINLLFVAIFTGECIVKLAALRHYYFTNSWNIFDFVVVILSIVGTVLSDIIQKYFFSPTLFRVIRLARIGRILRLIRGAKGIRTLLFALMMSLPALFNIGLLLFLVMFIYSIFGMANFAYVKWEAGIDDMFNFQTFANSMLCLFQITTSAGWDGLLSPILNTGPPYCDPTLPNSNGSRGDCGSPAVGILFFTTYIIISFLIVVNMYIAIILENFSVATEESTEPLSEDDFDMFYEIWEKFDPEATQFIEYSVLSDFADALSEPLRIAKPNQISLINMDLPMVSGDRIHCMDILFAFTKRVLGESGEMDALKIQMEEKFMAANPSKISYEPITTTLRRKHEEVSAMVIQRAFRRHLLQRSLKHASFLFRQQAGSGLSEEDAPEREGLIAYVMSENFSRPLGPPSSSSISSTSFPPSYDSVTRATSDNLQVRGSDYSHSEDLADFPPSPDRDRESIV'],
|
| 202 |
+
['SUMO1_HUMAN' ,'Human', 'MSDQEAKPSTEDLGDKKEGEYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPMNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV']
|
| 203 |
+
],
|
| 204 |
+
)
|
| 205 |
+
gr.Markdown("<br>")
|
| 206 |
+
gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
|
| 207 |
|
| 208 |
+
#output_plot = gr.Plot(label="Fitness predictions for all single amino acid substitutions in mutation range")
|
| 209 |
+
#output_image = gr.Image(label="Fitness predictions for all single amino acid substitutions in mutation range",type="filepath")
|
| 210 |
+
output_image = gr.Gallery(label="Fitness predictions (inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones)",type="filepath") #Using Gallery to be able to scroll large matrix images
|
| 211 |
+
|
| 212 |
+
output_recommendations = gr.Textbox(label="Mutation recommendations")
|
| 213 |
+
|
| 214 |
+
clear_button.click(
|
| 215 |
+
inputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
|
| 216 |
+
outputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
|
| 217 |
+
fn=clear_inputs
|
| 218 |
+
)
|
| 219 |
+
run_button.click(
|
| 220 |
+
fn=score_and_create_matrix_all_singles,
|
| 221 |
+
inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror],
|
| 222 |
+
outputs=[output_image,output_recommendations],
|
| 223 |
+
)
|
| 224 |
+
gr.Markdown("# Mutate the starting protein sequence")
|
| 225 |
+
with gr.Row():
|
| 226 |
+
mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)")
|
| 227 |
+
mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary")
|
| 228 |
+
mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence")
|
| 229 |
+
mutate_button.click(
|
| 230 |
+
fn = get_mutated_protein,
|
| 231 |
+
inputs = [protein_sequence_input,mutation_triplet],
|
| 232 |
+
outputs = mutated_protein_sequence
|
| 233 |
+
)
|
| 234 |
+
gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>")
|
| 235 |
+
gr.Markdown("For more information about the Tranception model, please refer to our paper below:")
|
| 236 |
+
gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>")
|
| 237 |
+
gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a> <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a> <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a>")
|
| 238 |
|
| 239 |
+
tranception_design.launch(debug=True,share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|