Paulie-Aditya commited on
Commit
a88b5a8
Β·
1 Parent(s): f597e32

update using medical chatbot

Browse files
Files changed (4) hide show
  1. .gitignore +2 -0
  2. README.md +0 -2
  3. app.py +46 -42
  4. backend.py +39 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *.venv
2
+ *.gitattributes
README.md CHANGED
@@ -8,5 +8,3 @@ sdk_version: 5.0.1
8
  app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
8
  app_file: app.py
9
  pinned: false
10
  ---
 
 
app.py CHANGED
@@ -1,62 +1,66 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from backend import MedicalAssistant
4
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
  """
8
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
+ assistant = MedicalAssistant()
10
 
11
+ # def respond(
12
+ # message,
13
+ # history: list[tuple[str, str]],
14
+ # system_message,
15
+ # max_tokens,
16
+ # temperature,
17
+ # top_p,
18
+ # ):
19
+ # messages = [{"role": "system", "content": system_message}]
20
 
21
+ # for val in history:
22
+ # if val[0]:
23
+ # messages.append({"role": "user", "content": val[0]})
24
+ # if val[1]:
25
+ # messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
26
 
27
+ # messages.append({"role": "user", "content": message})
28
 
29
+ # response = ""
30
 
31
+ # for message in client.chat_completion(
32
+ # messages,
33
+ # max_tokens=max_tokens,
34
+ # stream=True,
35
+ # temperature=temperature,
36
+ # top_p=top_p,
37
+ # ):
38
+ # token = message.choices[0].delta.content
39
 
40
+ # response += token
41
+ # yield response
42
 
43
+ def respond(
44
+ message,
45
+ history: list[tuple[str, str]]
46
+ ):
47
+ response = assistant.generate_response(message)
48
+ return response
49
 
 
 
 
50
  demo = gr.ChatInterface(
51
  respond,
52
+ # additional_inputs=[
53
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
54
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
55
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
56
+ # gr.Slider(
57
+ # minimum=0.1,
58
+ # maximum=1.0,
59
+ # value=0.95,
60
+ # step=0.05,
61
+ # label="Top-p (nucleus sampling)",
62
+ # ),
63
+ # ],
64
  )
65
 
66
 
backend.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ class MedicalAssistant:
5
+ def __init__(self, model_name="sethuiyer/Medichat-Llama3-8B", device="cuda"):
6
+ self.device = device
7
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)
9
+ self.sys_message = '''
10
+ You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
11
+ provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
12
+ '''
13
+
14
+ def format_prompt(self, question):
15
+ messages = [
16
+ {"role": "system", "content": self.sys_message},
17
+ {"role": "user", "content": question}
18
+ ]
19
+ prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
20
+ return prompt
21
+
22
+ def generate_response(self, question, max_new_tokens=512):
23
+ prompt = self.format_prompt(question)
24
+ inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
25
+ with torch.no_grad():
26
+ outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens, use_cache=True)
27
+ answer = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
28
+ return answer
29
+
30
+ # if __name__ == "__main__":
31
+ # assistant = MedicalAssistant()
32
+ # question = '''
33
+ # Symptoms:
34
+ # Dizziness, headache, and nausea.
35
+
36
+ # What is the differential diagnosis?
37
+ # '''
38
+ # response = assistant.generate_response(question)
39
+ # print(response)