Spaces:
Sleeping
Sleeping
import torch | |
import time | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1 | |
YT_LENGTH_LIMIT_S = 300 # limit to 5min YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
def transcribe(model, audio, task): | |
if audio is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
chunk_length_s=30, | |
device=device, | |
) | |
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"] | |
return text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="100%" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def yt_transcribe(model, yt_url, task): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
chunk_length_s=30, | |
device=device, | |
) | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"] | |
return html_embed_str, text | |
demo = gr.Blocks() | |
transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Dropdown([ | |
("tiny", "RaivisDejus/whisper-tiny-lv"), | |
("small", "RaivisDejus/whisper-small-lv"), | |
("medium", "arturslogins/whisper-medium-lv"), | |
("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17") | |
], label="Model", value="RaivisDejus/whisper-small-lv"), | |
gr.Audio(sources=["upload", "microphone"],type="filepath", label="Audio"), | |
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe"), | |
], | |
outputs=gr.Textbox(label="Transcription", lines=15), | |
title="Latvian speech recognition: Three models available", | |
description=(""" | |
🤖 [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also poor accuracy. | |
On this demo hardware 30 second audio will take ~45 seconds to transcribe. | |
🤖 [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM. | |
On this demo hardware 30 second audio will take ~1 minute to transcribe. | |
🤖 [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU. On this demo hardware 30 second audio will take ~4 minutes to transcribe. | |
You can test the large model on a free Google Colab GPU. Google account will be required. <a target="_blank" href="https://colab.research.google.com/gist/raivisdejus/07ca2e37d1fb87f81df12e424cf9175b/latviesu-runas-atpazisana.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> | |
To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/) | |
""" | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Dropdown([ | |
("tiny", "RaivisDejus/whisper-tiny-lv"), | |
("small", "RaivisDejus/whisper-small-lv"), | |
], label="Model", value="RaivisDejus/whisper-small-lv"), | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL (max 5min long)"), | |
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe") | |
], | |
# outputs=["html", "text"], | |
outputs=[gr.HTML(), gr.Textbox(label="Transcription", lines=10)], | |
title="Latvian speech recognition: Two models available", | |
description=(""" | |
🤖 [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also poor accuracy | |
🤖 [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM | |
To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/) | |
""" | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([transcribe, yt_transcribe], ["Microphone / Audio file", "YouTube"]) | |
demo.queue(max_size=3) | |
demo.launch() | |