Spaces:
Running
Running
new files sample_caching
Browse files- app/sample_caching.py +133 -0
- app/ui_contenders.py +7 -0
- test_tts_maskgct.py +13 -0
- test_tts_styletts_kokoro.py +32 -0
app/sample_caching.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import itertools
|
| 3 |
+
import random
|
| 4 |
+
from typing import List, Tuple, Set, Dict
|
| 5 |
+
from hashlib import md5, sha1
|
| 6 |
+
# from .synth import clear_stuff
|
| 7 |
+
|
| 8 |
+
class User:
|
| 9 |
+
def __init__(self, user_id: str):
|
| 10 |
+
self.user_id = user_id
|
| 11 |
+
self.voted_pairs: Set[Tuple[str, str]] = set()
|
| 12 |
+
|
| 13 |
+
class Sample:
|
| 14 |
+
def __init__(self, filename: str, transcript: str, modelName: str):
|
| 15 |
+
self.filename = filename
|
| 16 |
+
self.transcript = transcript
|
| 17 |
+
self.modelName = modelName
|
| 18 |
+
|
| 19 |
+
# cache audio samples for quick voting
|
| 20 |
+
cached_samples: List[Sample] = []
|
| 21 |
+
voting_users = {
|
| 22 |
+
# userid as the key and USER() as the value
|
| 23 |
+
}
|
| 24 |
+
# List[Tuple[Sample, Sample]]
|
| 25 |
+
all_pairs = []
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_userid(session_hash: str, request):
|
| 29 |
+
# JS cookie
|
| 30 |
+
if (session_hash != ''):
|
| 31 |
+
# print('auth by session cookie')
|
| 32 |
+
return sha1(bytes(session_hash.encode('ascii')), usedforsecurity=False).hexdigest()
|
| 33 |
+
|
| 34 |
+
if request.username:
|
| 35 |
+
# print('auth by username')
|
| 36 |
+
# by HuggingFace username - requires `auth` to be enabled therefore denying access to anonymous users
|
| 37 |
+
return sha1(bytes(request.username.encode('ascii')), usedforsecurity=False).hexdigest()
|
| 38 |
+
else:
|
| 39 |
+
# print('auth by ip')
|
| 40 |
+
# by IP address - unreliable when gradio within HTML iframe
|
| 41 |
+
# return sha1(bytes(request.client.host.encode('ascii')), usedforsecurity=False).hexdigest()
|
| 42 |
+
# by browser session cookie - Gradio on HF is run in an HTML iframe, access to parent session required to reach session token
|
| 43 |
+
# return sha1(bytes(request.headers.encode('ascii'))).hexdigest()
|
| 44 |
+
# by browser session hash - Not a cookie, session hash changes on page reload
|
| 45 |
+
return sha1(bytes(request.session_hash.encode('ascii')), usedforsecurity=False).hexdigest()
|
| 46 |
+
|
| 47 |
+
# Give user a cached audio sample pair they have yet to vote on
|
| 48 |
+
def give_cached_sample(session_hash: str, autoplay: bool, request: gr.Request):
|
| 49 |
+
# add new userid to voting_users from Browser session hash
|
| 50 |
+
# stored only in RAM
|
| 51 |
+
userid = get_userid(session_hash, request)
|
| 52 |
+
|
| 53 |
+
if userid not in voting_users:
|
| 54 |
+
voting_users[userid] = User(userid)
|
| 55 |
+
|
| 56 |
+
def get_next_pair(user: User):
|
| 57 |
+
# FIXME: all_pairs var out of scope
|
| 58 |
+
# all_pairs = generate_matching_pairs(cached_samples)
|
| 59 |
+
|
| 60 |
+
# for pair in all_pairs:
|
| 61 |
+
for pair in generate_matching_pairs(cached_samples):
|
| 62 |
+
hash1 = md5(bytes((pair[0].modelName + pair[0].transcript).encode('ascii'))).hexdigest()
|
| 63 |
+
hash2 = md5(bytes((pair[1].modelName + pair[1].transcript).encode('ascii'))).hexdigest()
|
| 64 |
+
pair_key = (hash1, hash2)
|
| 65 |
+
if (
|
| 66 |
+
pair_key not in user.voted_pairs
|
| 67 |
+
# or in reversed order
|
| 68 |
+
and (pair_key[1], pair_key[0]) not in user.voted_pairs
|
| 69 |
+
):
|
| 70 |
+
return pair
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
pair = get_next_pair(voting_users[userid])
|
| 74 |
+
if pair is None:
|
| 75 |
+
comp_defaults = []
|
| 76 |
+
for i in range(0, 14):
|
| 77 |
+
comp_defaults.append(gr.update())
|
| 78 |
+
return [
|
| 79 |
+
*comp_defaults,
|
| 80 |
+
# *clear_stuff(),
|
| 81 |
+
# disable get cached sample button
|
| 82 |
+
gr.update(interactive=False)
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
return (
|
| 86 |
+
gr.update(visible=True, value=pair[0].transcript, elem_classes=['blurred-text']),
|
| 87 |
+
"Synthesize",
|
| 88 |
+
gr.update(visible=True), # r2
|
| 89 |
+
pair[0].modelName, # model1
|
| 90 |
+
pair[1].modelName, # model2
|
| 91 |
+
gr.update(visible=True, value=pair[0].filename, interactive=False, autoplay=autoplay), # aud1
|
| 92 |
+
gr.update(visible=True, value=pair[1].filename, interactive=False, autoplay=False), # aud2
|
| 93 |
+
gr.update(visible=True, interactive=False), #abetter
|
| 94 |
+
gr.update(visible=True, interactive=False), #bbetter
|
| 95 |
+
gr.update(visible=False), #prevmodel1
|
| 96 |
+
gr.update(visible=False), #prevmodel2
|
| 97 |
+
gr.update(visible=False), #nxt round btn
|
| 98 |
+
# reset aplayed, bplayed audio playback events
|
| 99 |
+
False, #aplayed
|
| 100 |
+
False, #bplayed
|
| 101 |
+
# fetch cached btn
|
| 102 |
+
gr.update(interactive=True)
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def generate_matching_pairs(samples: List[Sample]) -> List[Tuple[Sample, Sample]]:
|
| 106 |
+
transcript_groups: Dict[str, List[Sample]] = {}
|
| 107 |
+
samples = random.sample(samples, k=len(samples))
|
| 108 |
+
for sample in samples:
|
| 109 |
+
if sample.transcript not in transcript_groups:
|
| 110 |
+
transcript_groups[sample.transcript] = []
|
| 111 |
+
transcript_groups[sample.transcript].append(sample)
|
| 112 |
+
|
| 113 |
+
matching_pairs: List[Tuple[Sample, Sample]] = []
|
| 114 |
+
for group in transcript_groups.values():
|
| 115 |
+
matching_pairs.extend(list(itertools.combinations(group, 2)))
|
| 116 |
+
|
| 117 |
+
return matching_pairs
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# note the vote on cached sample pair
|
| 122 |
+
def voted_on_cached(modelName1: str, modelName2: str, transcript: str, session_hash: str, request: gr.Request):
|
| 123 |
+
userid = get_userid(session_hash, request)
|
| 124 |
+
# print(f'userid voted on cached: {userid}')
|
| 125 |
+
|
| 126 |
+
if userid not in voting_users:
|
| 127 |
+
voting_users[userid] = User(userid)
|
| 128 |
+
|
| 129 |
+
hash1 = md5(bytes((modelName1 + transcript).encode('ascii'))).hexdigest()
|
| 130 |
+
hash2 = md5(bytes((modelName2 + transcript).encode('ascii'))).hexdigest()
|
| 131 |
+
|
| 132 |
+
voting_users[userid].voted_pairs.add((hash1, hash2))
|
| 133 |
+
return []
|
app/ui_contenders.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from .config import *
|
| 3 |
+
from .messages import *
|
| 4 |
+
|
| 5 |
+
with gr.Blocks() as tts_info:
|
| 6 |
+
gr.Markdown(TTS_INFO)
|
| 7 |
+
gr.HTML(TTS_DATASET_IFRAME)
|
test_tts_maskgct.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from gradio_client import Client, handle_file
|
| 3 |
+
|
| 4 |
+
client = Client("amphion/maskgct", hf_token=os.getenv('HF_TOKEN'))
|
| 5 |
+
endpoints = client.view_api(all_endpoints=True, print_info=False, return_format='dict')
|
| 6 |
+
# print(endpoints)
|
| 7 |
+
result = client.predict(
|
| 8 |
+
prompt_wav=handle_file('https://cdn-uploads.huggingface.co/production/uploads/63d52e0c4e5642795617f668/V6-rMmI-P59DA4leWDIcK.wav'),
|
| 9 |
+
target_text="Hello!!",
|
| 10 |
+
target_len=-1,
|
| 11 |
+
n_timesteps=25,
|
| 12 |
+
api_name="/predict"
|
| 13 |
+
)
|
test_tts_styletts_kokoro.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from gradio_client import Client, file
|
| 3 |
+
|
| 4 |
+
client = Client("hexgrad/kokoro", hf_token=os.getenv('HF_TOKEN'))
|
| 5 |
+
# endpoints = client.view_api(all_endpoints=True, print_info=False, return_format='dict')
|
| 6 |
+
# print(endpoints)
|
| 7 |
+
result = client.predict(
|
| 8 |
+
text='"I hate it when people lie to me."',
|
| 9 |
+
voice="af",
|
| 10 |
+
ps=None,
|
| 11 |
+
speed=1,
|
| 12 |
+
trim=0,
|
| 13 |
+
use_gpu=False,
|
| 14 |
+
# *[
|
| 15 |
+
# "Oh, hello there!!",
|
| 16 |
+
# "af", #voice
|
| 17 |
+
# None, #ps
|
| 18 |
+
# 1, #speed
|
| 19 |
+
# 3000, #trim
|
| 20 |
+
# False, #use_gpu; fast enough with multithreaded with CPU
|
| 21 |
+
# ],
|
| 22 |
+
api_name="/generate"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
print(result)
|
| 26 |
+
|
| 27 |
+
# text="Oh, hello there!!",
|
| 28 |
+
# voice="af",
|
| 29 |
+
# ps=None,
|
| 30 |
+
# speed=1,
|
| 31 |
+
# trim=3000,
|
| 32 |
+
# use_gpu=False,
|