Spaces:
Runtime error
Runtime error
| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| # This file is modified from https://github.com/haotian-liu/LLaVA/ | |
| # Copyright 2023 Haotian Liu | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import warnings | |
| import torch | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PretrainedConfig | |
| from llava.model import LlavaLlamaModel | |
| from llava.model.utils import is_mm_model | |
| def load_pretrained_model( | |
| model_path, | |
| model_name, | |
| model_base=None, | |
| load_8bit=False, | |
| load_4bit=False, | |
| device_map="auto", | |
| device="cuda", | |
| **kwargs, | |
| ): | |
| kwargs = {"device_map": device_map, **kwargs} | |
| if device != "cuda": | |
| kwargs["device_map"] = {"": device} | |
| if load_8bit: | |
| kwargs["quantization_config"] = BitsAndBytesConfig( | |
| load_in_8bit=True, | |
| bnb_8bit_compute_dtype=torch.float16, | |
| ) | |
| elif load_4bit: | |
| kwargs["load_in_4bit"] = True | |
| kwargs["quantization_config"] = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4", | |
| ) | |
| else: | |
| kwargs["torch_dtype"] = torch.float16 | |
| # kwargs["torch_dtype"] = torch.bfloat16 | |
| if is_mm_model(model_path): | |
| # Load LLaVA model | |
| ## TODO @yunhao: mind fixing lora | |
| if "lora" in model_name.lower() and model_base is None: | |
| warnings.warn( | |
| "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." | |
| ) | |
| if ("lora" in model_name.lower() or "dora" in model_name.lower()) and model_base is not None: | |
| lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
| print(lora_cfg_pretrained) | |
| print("Loading LLaVA from base model...") | |
| config = AutoConfig.from_pretrained(model_base) | |
| prepare_config_for_eval(config, kwargs) | |
| model = LlavaLlamaModel.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
| tokenizer = model.tokenizer | |
| token_num, tokem_dim = model.llm.lm_head.out_features, model.llm.lm_head.in_features | |
| if model.llm.lm_head.weight.shape[0] != token_num: | |
| model.llm.lm_head.weight = torch.nn.Parameter( | |
| torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) | |
| ) | |
| model.llm.embed_tokens.weight = torch.nn.Parameter( | |
| torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) | |
| ) | |
| print("Loading additional LLaVA weights...") | |
| if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): | |
| non_lora_trainables = torch.load( | |
| os.path.join(model_path, "non_lora_trainables.bin"), | |
| map_location="cpu", | |
| ) | |
| else: | |
| # this is probably from HF Hub | |
| from huggingface_hub import hf_hub_download | |
| def load_from_hf(repo_id, filename, subfolder=None): | |
| cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) | |
| return torch.load(cache_file, map_location="cpu") | |
| non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") | |
| non_lora_trainables = { | |
| (k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items() | |
| } | |
| if any(k.startswith("model.model.") for k in non_lora_trainables): | |
| non_lora_trainables = { | |
| (k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items() | |
| } | |
| model.load_state_dict(non_lora_trainables, strict=False) | |
| from peft import PeftModel | |
| print("Loading LoRA weights...") | |
| model = PeftModel.from_pretrained(model, model_path) | |
| print("Merging LoRA weights...") | |
| model = model.merge_and_unload() | |
| print("Model is loaded...") | |
| else: | |
| config = AutoConfig.from_pretrained(model_path) | |
| config.resume_path = model_path | |
| prepare_config_for_eval(config, kwargs) | |
| model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs) | |
| tokenizer = model.tokenizer | |
| else: | |
| # Load language model | |
| if model_base is not None: | |
| # PEFT model | |
| from peft import PeftModel | |
| tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
| model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) | |
| print(f"Loading LoRA weights from {model_path}") | |
| model = PeftModel.from_pretrained(model, model_path) | |
| print(f"Merging weights") | |
| model = model.merge_and_unload() | |
| print("Convert to FP16...") | |
| model.to(torch.float16) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, legacy=False) | |
| model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
| model.eval() | |
| image_processor = None | |
| if is_mm_model(model_path): | |
| model.resize_token_embeddings(len(tokenizer)) | |
| if hasattr(model.llm.config, "max_sequence_length"): | |
| context_len = model.config.max_sequence_length | |
| else: | |
| context_len = 2048 | |
| return tokenizer, model, image_processor, context_len | |
| def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict): | |
| try: | |
| # compatible with deprecated config convention | |
| if getattr(config, "vision_tower_cfg", None) is None: | |
| config.vision_tower_cfg = config.mm_vision_tower | |
| except AttributeError: | |
| raise ValueError(f"Invalid configuration! Cannot find vision_tower in config:\n{config}") | |
| # Handle case where torch_dtype might be consumed by quantization config | |
| torch_dtype = kwargs.pop("torch_dtype", torch.float16) | |
| config.model_dtype = torch_dtype.__str__() | |