# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. from functools import partial from typing import Any, Dict, List, Optional, Tuple import torch from .basic import BasicVideoEncoder __all__ = ["TSPVideoEncoder"] def pool(x: torch.Tensor, size: int, dim: int) -> torch.Tensor: return x.view(x.shape[:dim] + (-1, size) + x.shape[dim + 1 :]).mean(dim + 1) class TSPVideoEncoder(BasicVideoEncoder): def __init__( self, parent: torch.nn.Module, pool_sizes: List[Tuple[int, int, int]], start_tokens: Optional[str] = None, end_tokens: Optional[str] = "\n", sep_tokens: Optional[str] = None, ) -> None: super().__init__(parent, start_tokens=start_tokens, end_tokens=end_tokens) self.pool_sizes = pool_sizes self.sep_tokens = sep_tokens def _process_features( self, inputs: torch.Tensor, start_token_embeds: Optional[torch.Tensor], end_token_embeds: Optional[torch.Tensor], sep_token_embeds: Optional[torch.Tensor], ) -> torch.Tensor: nt, ns = inputs.shape[:2] nl = int(ns**0.5) outputs = [] for pool_size in self.pool_sizes: features = inputs.view(nt, nl, nl, -1) for dim, p in enumerate(pool_size): features = pool(features, p, dim=dim) features = features.flatten(1, 2) features = super()._process_features( features, start_token_embeds=start_token_embeds, end_token_embeds=end_token_embeds, ) if sep_token_embeds is not None: features = torch.cat([features, sep_token_embeds], dim=0) outputs.append(features) return torch.cat(outputs, dim=0) def forward(self, videos: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]: num_frames = [video.shape[0] for video in videos] images = torch.cat(videos, dim=0) features = self.parent.encode_images(images) features = torch.split(features, num_frames) process_features = partial( self._process_features, start_token_embeds=self.embed_tokens(self.start_tokens), end_token_embeds=self.embed_tokens(self.end_tokens), sep_token_embeds=self.embed_tokens(self.sep_tokens), ) return [process_features(f) for f in features]