File size: 7,657 Bytes
d4e1ed9
 
 
 
 
 
68d4a44
d4e1ed9
 
 
 
 
 
 
 
 
 
ff62d4f
 
d4e1ed9
 
ff62d4f
d4e1ed9
ff62d4f
 
 
d4e1ed9
 
d18bd01
5f0033b
ff62d4f
 
 
 
d4e1ed9
 
 
 
ff62d4f
 
 
e09ca8b
d4e1ed9
 
d881a0d
dc0fedf
 
d881a0d
 
dc0fedf
d881a0d
dc0fedf
 
 
 
d881a0d
 
 
dc0fedf
 
 
d881a0d
 
 
 
 
dc0fedf
 
 
d881a0d
 
 
dc0fedf
 
 
d881a0d
 
 
 
dc0fedf
 
 
d881a0d
dc0fedf
d881a0d
 
 
 
 
 
dc0fedf
 
 
d881a0d
 
 
 
 
 
 
dc0fedf
 
 
d881a0d
 
 
 
 
dc0fedf
 
 
d881a0d
 
 
 
 
 
dc0fedf
 
 
d881a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0fedf
 
 
d4e1ed9
 
 
 
 
dc0fedf
 
 
d881a0d
 
 
 
 
 
 
 
 
 
 
e56e479
d881a0d
 
 
 
 
 
 
 
 
 
 
 
e56e479
d881a0d
dc0fedf
d881a0d
 
 
dc0fedf
 
d4e1ed9
a10cd56
d18bd01
4a08cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f47d5
 
 
a10cd56
 
1ec4295
4a08cd6
d4e1ed9
 
 
30f47d5
d4e1ed9
 
 
 
 
 
 
 
1ec4295
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("Trinoid/Data_Management")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    thinking_process = []
    
    # Use chat completion instead of text generation
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        if token:
            response += token
        yield response


# Custom CSS for Plant Wisdom.AI styling
custom_css = """
.gradio-container {
    font-family: 'Source Sans Pro', 'Helvetica Neue', Arial, sans-serif;
    max-width: 1000px;
    margin: 0 auto;
    background-color: #ffffff;
}

.contain {
    background-color: #ffffff;
    border-radius: 12px;
    box-shadow: 0 4px 6px rgba(0,0,0,0.05);
    padding: 20px;
}

.message {
    padding: 16px 20px;
    border-radius: 12px;
    margin: 12px 0;
    font-size: 16px;
    line-height: 1.5;
}

.message.user {
    background-color: #f5f7fa;
    margin-left: 15%;
    border: 1px solid #e8eef7;
}

.message.assistant {
    background-color: #f0f7f0;
    margin-right: 15%;
    border: 1px solid #e0ede0;
    color: #2c3338;
}

.submit-btn {
    background-color: #2e7d32 !important;
    color: white !important;
    border-radius: 8px !important;
    padding: 12px 24px !important;
    font-weight: 600 !important;
    font-size: 16px !important;
    transition: all 0.3s ease !important;
    border: none !important;
}

.submit-btn:hover {
    background-color: #1b5e20 !important;
    transform: translateY(-1px) !important;
    box-shadow: 0 4px 8px rgba(0,0,0,0.1) !important;
}

.submit-btn:active {
    transform: translateY(0) !important;
}

.slider-container {
    background-color: #f8faf8;
    padding: 20px;
    border-radius: 12px;
    margin: 12px 0;
    border: 1px solid #e0ede0;
}

.textbox {
    border: 2px solid #e0ede0 !important;
    border-radius: 8px !important;
    padding: 12px !important;
    font-size: 16px !important;
    transition: all 0.3s ease !important;
    background-color: #ffffff !important;
}

.textbox:focus {
    border-color: #2e7d32 !important;
    outline: none !important;
    box-shadow: 0 0 0 3px rgba(46,125,50,0.1) !important;
}

.title {
    color: #2c3338 !important;
    font-size: 32px !important;
    font-weight: 700 !important;
    margin-bottom: 16px !important;
}

.description {
    color: #505a62 !important;
    font-size: 18px !important;
    line-height: 1.6 !important;
    margin-bottom: 24px !important;
}

.additional-inputs {
    background-color: #f8faf8;
    border: 1px solid #e0ede0;
    border-radius: 12px;
    padding: 20px;
    margin-top: 24px;
}

.chatbot {
    height: 600px !important;
    border: 1px solid #e0ede0;
    border-radius: 12px;
    background-color: #ffffff;
}
"""

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    title="AI Data Management Expert",
    description="Hello! I am your Data Management Expert, specialized in Microsoft 365. I'm here to help you with guidance on Data Management procedures. How can I assist you today?",
    theme=gr.themes.Base(
        primary_hue=gr.themes.Color(
            c50="#f3f7f3",
            c100="#e0ede0",
            c200="#b5d4b5",
            c300="#8abb8a",
            c400="#5fa25f",
            c500="#2e7d32",
            c600="#1b5e20",
            c700="#154a19",
            c800="#0e3511",
            c900="#082108",
            c950="#041104"
        ),
        secondary_hue=gr.themes.Color(
            c50="#f3f7f3",
            c100="#e0ede0",
            c200="#b5d4b5",
            c300="#8abb8a",
            c400="#5fa25f",
            c500="#2e7d32",
            c600="#1b5e20",
            c700="#154a19",
            c800="#0e3511",
            c900="#082108",
            c950="#041104"
        ),
        neutral_hue="slate",
        spacing_size="lg",
        radius_size="lg",
        font=["Source Sans Pro", "Helvetica Neue", "Arial", "sans-serif"],
    ),
    css=custom_css,
    additional_inputs=[
        gr.Textbox(
            value="""You are a specialized AI assistant made by Plant Wisdom.AI with deep knowledge of Microsoft 365 services—including SharePoint Online, OneDrive, Teams, Exchange, and the Microsoft Purview (Compliance) ecosystem—as well as general records management and data governance best practices.

Your primary objectives are:

Provide accurate, detailed, and practical answers about:

Microsoft 365's features, capabilities, and architecture.

Document and records management (e.g., retention labels, policies, disposition reviews).

Compliance and information governance (e.g., data loss prevention, eDiscovery, retention schedules).

SharePoint Online configuration, site management, and usage best practices.

Integration points across Microsoft 365 (Teams, Outlook, Power Platform, etc.).

Address user questions in a clear, direct manner without simply directing them to official documentation. Instead, share concise explanations and relevant examples.

When applicable, highlight best practices, common pitfalls, and recommended solutions based on real-world usage.

If you are not certain about an answer or lack enough context, say so clearly rather than guess.

Tone and Style:

Strive for clarity and helpfulness; avoid excessive jargon.

Avoid generic references like "refer to the documentation." Instead, explain or paraphrase relevant information whenever possible.

Cite Microsoft's recommended or well-known practices when beneficial, but do so in your own words.

Keep responses concise yet sufficiently detailed.

Additional Guidelines:

Where necessary, provide step-by-step instructions for configurations or troubleshooting.

Distinguish between official Microsoft 365 functionalities and custom solutions or third-party tools.

If the user's request includes advanced or niche scenarios, do your best to provide an overview, while acknowledging any areas that may require deeper research.

Maintain professionalism in all responses; be polite, solution-focused, and proactive.

Follow any privacy or ethical guidelines, and do not disclose personally identifiable information about real people.

IMPORTANT: If a question has been asked before in the conversation, acknowledge this and either refer back to the previous answer or provide additional context. Do not simply repeat the same answer verbatim.""",
            label="System message"
        ),
        gr.Slider(minimum=1, maximum=2048, value=1200, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=2.0, value=0.4, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.7,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0")