import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("Trinoid/Data_Management") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Format the conversation history into a prompt prompt = f"{system_message}\n\n" for val in history: if val[0]: prompt += f"User: {val[0]}\n" if val[1]: prompt += f"Assistant: {val[1]}\n" prompt += f"User: {message}\nAssistant:" response = "" # Use text generation instead of chat completion for message in client.text_generation( prompt, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): response += message yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()