import streamlit as st import re import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split # Load your symptom-disease data data = pd.read_csv("Symptom2Disease.csv") # Initialize the TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer() # Apply TF-IDF vectorization to the preprocessed text data X = tfidf_vectorizer.fit_transform(data['text']) # Split the dataset into a training set and a testing set X_train, X_test, y_train, y_test = train_test_split(X, data['label'], test_size=0.2, random_state=42) # Initialize the Multinomial Naive Bayes model model = MultinomialNB() # Train the model on the training data model.fit(X_train, y_train) # Set Streamlit app title with emojis st.title("Health Symptom-to-Disease Predictor 🏥👨‍⚕️") # Define a sidebar st.sidebar.title("Tool Definition") st.sidebar.markdown("__Tool Definition__") st.sidebar.markdown("This tool helps you identify possible diseases based on the symptoms you provide.") st.sidebar.markdown("By swiftly analyzing patient-reported symptoms and providing disease predictions, the tool aids healthcare professionals in the initial assessment of potential conditions, facilitating quicker decision-making and improving patient care" st.sidebar.markdown("I built this tool as part of my final project for the KaggleX program.") st.sidebar.markdown("⚠️ **Limitation**") st.sidebar.markdown("This tool's predictions are based solely on symptom descriptions and may not account for other critical factors.") st.sidebar.markdown("It should be used as an initial reference and not as a sole diagnostic tool. 👩‍⚕️") st.warning("Please note that this tool is for informational purposes only. Always consult a healthcare professional for accurate medical advice.") show_faqs = st.sidebar.checkbox("Show FAQs") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Function to preprocess user input def preprocess_input(user_input): user_input = user_input.lower() # Convert to lowercase user_input = re.sub(r"[^a-zA-Z\s]", "", user_input) # Remove special characters and numbers user_input = " ".join(user_input.split()) # Remove extra spaces return user_input # Function to predict diseases based on user input def predict_diseases(user_clean_text): user_input_vector = tfidf_vectorizer.transform([user_clean_text]) # Vectorize the cleaned user input predictions = model.predict(user_input_vector) # Make predictions using the trained model return predictions # Add user input section user_input = st.text_area("Enter your symptoms (how you feel):", key="user_input") # Add button to predict disease if st.button("Predict Disease"): # Display loading message with st.spinner("Diagnosing patient..."): # Check if user input is not empty if user_input: cleaned_input = preprocess_input(user_input) predicted_diseases = predict_diseases(cleaned_input) # Display predicted diseases st.session_state.messages.append({"role": "user", "content": user_input}) st.session_state.messages.append({"role": "assistant", "content": f"Based on your symptoms, you might have {', '.join(predicted_diseases)}."}) st.write("Based on your symptoms, you might have:") for disease in predicted_diseases: st.write(f"- {disease}") else: st.warning("Please enter your symptoms before predicting.") # Create FAQs section if show_faqs: st.markdown("## Frequently Asked Questions") st.markdown("**Q: How does this tool work?**") st.markdown("A: The tool uses a machine learning model to analyze the symptoms you enter and predicts possible diseases based on a pre-trained dataset.") st.markdown("**Q: Is this a substitute for a doctor's advice?**") st.markdown("A: No, this tool is for informational purposes only. It's essential to consult a healthcare professional for accurate medical advice.") st.markdown("**Q: Can I trust the predictions?**") st.markdown("A: While the tool provides predictions, it's not a guarantee of accuracy. It's always best to consult a healthcare expert for a reliable diagnosis.") # Add attribution st.markdown("Created with ❤️ by Joas")