|
|
import torch
|
|
|
import nemo.collections.asr as nemo_asr
|
|
|
import gc
|
|
|
import numpy as np
|
|
|
import torchaudio
|
|
|
|
|
|
pretrained_model_path="./stt_fa_fastconformer_hybrid_large_finetuned.nemo"
|
|
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
gc.collect()
|
|
|
model = nemo_asr.models.EncDecHybridRNNTCTCModel.restore_from(pretrained_model_path)
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
model = model.to(device)
|
|
|
model.freeze()
|
|
|
|
|
|
def transcribe(stream, new_chunk):
|
|
|
if new_chunk is None:
|
|
|
return None, ""
|
|
|
|
|
|
sample_rate, data = new_chunk
|
|
|
|
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
|
|
if isinstance(data, np.ndarray):
|
|
|
audio_tensor = torch.tensor(data, dtype=torch.float32)
|
|
|
else:
|
|
|
raise ValueError("Audio data must be a numpy array")
|
|
|
|
|
|
|
|
|
target_sample_rate = 16000
|
|
|
if sample_rate != target_sample_rate:
|
|
|
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
|
|
|
audio_tensor = resampler(audio_tensor)
|
|
|
|
|
|
if stream is not None:
|
|
|
stream['audio'] = torch.cat([stream['audio'], audio_tensor], dim=-1)
|
|
|
else:
|
|
|
stream = {"text": ""}
|
|
|
stream['audio'] = audio_tensor
|
|
|
|
|
|
|
|
|
max_length = 5 * target_sample_rate
|
|
|
new_text = ""
|
|
|
|
|
|
|
|
|
while stream['audio'].shape[-1] > max_length:
|
|
|
|
|
|
audio_chunk = stream['audio'][..., :max_length]
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
transcript = model.transcribe(audio_chunk)
|
|
|
|
|
|
|
|
|
new_text += " " + transcript[0][0].strip()
|
|
|
|
|
|
|
|
|
stream['audio'] = stream['audio'][..., max_length:]
|
|
|
|
|
|
stream['text'] += new_text
|
|
|
return stream, stream['text'].strip()
|
|
|
|
|
|
|
|
|
interface = gr.Interface(
|
|
|
fn=transcribe,
|
|
|
inputs=['state', gr.Audio(sources="microphone", streaming=True, type="numpy")],
|
|
|
outputs=["state", "text"],
|
|
|
live=True,
|
|
|
)
|
|
|
|
|
|
interface.launch() |