Spaces:
Runtime error
Runtime error
File size: 19,162 Bytes
10e9b7d 3c4371f a5da8b4 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 a5da8b4 4021bf3 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 a5da8b4 31243f4 3c4371f 31243f4 a5da8b4 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 a5da8b4 31243f4 a5da8b4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import gradio as gr
import pandas as pd
from smolagents import CodeAgent, OpenAIServerModel, tool
import os, subprocess
from bs4 import BeautifulSoup
from duckduckgo_search import DDGS
import csv
import json
import requests
import whisper
from typing import Optional
import openpyxl
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
def download_file(file_name: str) -> None:
if not os.path.exists(file_name):
url = f"{DEFAULT_API_URL}/files/{file_name.split('.')[0]}"
r = requests.get(url)
with open(file_name, "wb") as f:
f.write(r.content)
@tool
def open_file_as_text(file_name: str, filetype: Optional[str] = "txt") -> str:
"""
Opens a file and returns its content as readable text.
Supports 'txt', 'json', 'csv', 'xlsx', and 'mp3' (transcribes speech to text).
Args:
file_name (str): The path or name of the file.
filetype (Optional[str]): Type of file ('txt', 'json', 'csv', 'xlsx', 'mp3'). Defaults to 'txt'.
Returns:
str: The content of the file as text, or transcribed speech if 'mp3'.
"""
download_file(file_name)
try:
if filetype == "txt":
with open(file_name, "r", encoding="utf-8") as f:
return f.read()
elif filetype == "json":
with open(file_name, "r", encoding="utf-8") as f:
data = json.load(f)
return json.dumps(data, indent=2)
elif filetype == "csv":
with open(file_name, "r", encoding="utf-8") as f:
reader = csv.reader(f)
rows = list(reader)
return "\n".join([", ".join(row) for row in rows])
elif filetype == "xlsx":
wb = openpyxl.load_workbook(file_name, data_only=True)
sheet = wb.active
content = []
for row in sheet.iter_rows(values_only=True):
content.append(", ".join(str(cell) if cell is not None else "" for cell in row))
return "\n".join(content)
elif filetype == "mp3":
w = whisper.load_model("base")
res = w.transcribe(file_name)
return res["text"]
else:
return f"Unsupported filetype '{filetype}'. Supported types are 'txt', 'json', 'csv', 'xlsx', and 'mp3'."
except FileNotFoundError:
return f"File '{file_name}' not found."
except Exception as e:
return f"Error opening file '{file_name}': {str(e)}"
@tool
def web_search(query: str) -> str:
"""
Searches the web using DuckDuckGo and returns top search snippets.
Args:
query (str): The search query string.
Returns:
str: A list of top search results with title, snippet, and URL.
"""
try:
with DDGS() as ddgs:
results = ddgs.text(query, max_results=3)
if not results:
return "No results found."
return "\n\n".join([f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" for r in results])
except Exception as e:
return f"Error during search: {str(e)}"
def parse_wikipedia_table(table) -> str:
"""
Parses a Wikipedia table into a clean, readable text format.
Args:
table (Tag): BeautifulSoup Tag for the table.
Returns:
str: Formatted table as readable text.
"""
rows = []
headers = []
# Try to get headers
thead = table.find('thead')
if thead:
for th in thead.find_all('th'):
header_text = th.get_text(separator=" ", strip=True)
headers.append(header_text)
if headers:
rows.append(" | ".join(headers))
# Parse table body rows
tbody = table.find('tbody')
if not tbody:
tbody = table # fallback: some tables have no tbody explicitly
for tr in tbody.find_all('tr'):
cells = tr.find_all(['th', 'td'])
cell_texts = []
for cell in cells:
# Clean references like [7], [note 1], etc.
for sup in cell.find_all('sup', class_='reference'):
sup.decompose()
text = cell.get_text(separator=" ", strip=True)
cell_texts.append(text)
if cell_texts:
row_text = " | ".join(cell_texts)
rows.append(row_text)
return "\n".join(rows)
@tool
def read_wikipedia_page(url: str) -> str:
"""
Fetches a Wikipedia article and extracts clean sectioned text around the relevant query.
Args:
url (str): The Wikipedia page URL.
Returns:
str: Sectioned and readable snippet focused around the query.
"""
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36"
}
resp = requests.get(url, headers=headers, timeout=10)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
content_div = soup.find('div', id='mw-content-text')
if not content_div:
return "Content not found."
parts = []
for elem in content_div.find_all(['h2', 'h3', 'p', 'ul', 'ol', 'table']):
if elem.name in ['h2', 'h3']:
parts.append("\n\n" + elem.get_text(strip=True) + "\n")
elif elem.name in ['p', 'ul', 'ol']:
parts.append(elem.get_text(strip=True))
elif elem.name == 'table':
parts.append(parse_wikipedia_table(elem))
full_text = "\n".join(parts)
return full_text
@tool
def smart_paginate_around_query(full_text: str, query: str) -> list:
"""
Splits text into windows around each occurrence of the query.
Args:
full_text (str): The full text to search within.
query (str): The search query.
Returns:
list: List of relevant text windows (pages).
"""
before_chars = 1000
after_chars = 3000
full_text_lower = full_text.lower()
query_lower = query.lower()
query_len = len(query_lower)
pages = []
search_pos = 0
text_len = len(full_text)
while True:
match_pos = full_text_lower.find(query_lower, search_pos)
if match_pos == -1:
break # no more matches
# Define window around match
start = max(0, match_pos - before_chars)
end = min(text_len, match_pos + query_len + after_chars)
page = full_text[start:end]
pages.append(page)
# Move search pointer to AFTER current window
search_pos = end
return pages
@tool
def reverse_sentence(text: str) -> str:
"""
Reverses the input text.
Args:
text (str): The input string to be reversed.
Returns:
str: The reversed string.
"""
return text[::-1]
@tool
def run_python_code(file_name: str) -> str:
"""
Executes a Python file and returns its printed final output.
Args:
file_name (str): Name of the Python file.
Returns:
str: The final printed output.
"""
download_file(file_name)
try:
# Run in subprocess with timeout
result = subprocess.run(
["python", file_name],
capture_output=True,
text=True,
timeout=10 # seconds
)
if result.returncode != 0:
return f"Error running code: {result.stderr.strip()}"
output = result.stdout.strip()
return output
except subprocess.TimeoutExpired:
return "Execution timed out."
except Exception as e:
return f"Error: {str(e)}"
tools = [
open_file_as_text,
web_search,
read_wikipedia_page,
smart_paginate_around_query,
reverse_sentence,
]
model = OpenAIServerModel(
model_id="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
temperature=0
)
agent = CodeAgent(
model=model,
tools=tools,
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
)
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = CodeAgent(
model=model,
tools=tools,
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv",
"urllib"]
)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
full_prompt = f"""You are a highly precise answering agent.
When given a question:
- If necessary, perform a web search using the tool `web_search` to find possible sources of information.
- If the web search only returns titles and short snippets, you MUST visit the actual webpage to read the full content before answering.
- Use the `read_wikipedia_page` tool to fetch and read the Wikipedia page when necessary.
- You just have the ability to read Wikipedia pages only.
- You MUST paginate the content using `smart_paginate_around_query`.
- When using `smart_paginate_around_query`, you must select a short, general query based on the main keywords only. Avoid using full questions or long phrases. Use 1–3 essential words.
- If the task requires reversing the order of words, letters, phrases, or any text, you must use the `reverse_sentence` tool to perform the operation.
- Never reverse text manually inside your code. Always call the tool instead.
- If the task requires reading, listening, or analyzing a file, you must use the file specified in the `file_name` field of the task metadata, not the file name mentioned casually inside the question text.
- Comma separated lists MUST contain a single space after each comma.
- If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
- If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
- If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
- Only answer after you have gathered enough information by reading the actual page contents.
- Once you have the final answer, you must call `final_answer("your_answer")` immediately after printing it.
- Do not retry or execute anything else after calling `final_answer`.
- `final_answer` must wrap the exact printed value.
Provide ONLY the precise answer requested.
Do not include explanations, steps, reasoning, or additional text.
Be direct and specific. GAIA benchmark requires exact matching answers.
Example: if asked "What is the capital of France?", respond exactly:
Thoughts: I need to retrieve the capital of France from Wikipedia and output it directly.
Code:
```py
print("Paris")
```<end_code>
Based on the above guidelines, answer the following question:
--begin of question--
{question_text}
--end of question--
If the questions mentions the need to use a file, use the following `file_name` value as the `file_name` parameter in any function calls:
file_name: {file_name}"""
submitted_answer = agent.run(full_prompt)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |